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The hydraulic model investigation was performed to study important
design parameters for a weir jetty system including weir length, elevation,
orientation with respect to the shoreline and the conventional portion of
the jetty structure, tidal currents over the weir section, flow patterns
in the vicinity of the weir section, sediment movement over the weir
and effects of the weir jetty on accretion, and erosion upcoast of the
jetty system. The study was accomplished with a fixed-bed undistorted,
1:100 scale model. Large ocean and bay areas were reproduced in a
150-ft by 305~ft facility. Tides were reproduced in the model and two
types of inlet-bay systems were simulated--one system in which the bay
nearly fills (high Keulegan K value) and the other in which the bay
only partially fills (low Keulegan K wvalue), The conditions provided
extremes of velocity~tidal elevation flow relationships over the weir,
Sediment tracers and a movable-bed beach section provided the means to
examine deposition basin filling, fillet accretion patteruns for upcoast
waves, and fillet removal by waves from the downcoast direction for
several weir jetty orientations, including weir angles with the shoreline
of 30, 45, 60, and 90 deg.

Results indicate the mean tide level weir elevation is the most
practical elevation for providing wave protection for a dredge, good
sediment transport across the weir, and good flood-ebb tidal flow relation-
ships, i.e., moderate flood flow currents and little or no ebb flow,
Strong ebb flow currents over the weir are not desirable as they might
aid in migration of the navigation channel through the deposition basin.
Jetty systems with the outer, more oceanward portions parallel to each
other and at minimum spacing provide the best flow characteristics when
tidal current migration through the deposition basin region is considered.
Wave-generated currents upcoast of the weir jetty are not entirely
captured by the weir but some current, and thus sediment, moves oceanward
along the outer portion of the jetty. Also reflected waves off the
jetty and weir structure combine with incident waves to form a short-
crested wave field which aids in removal of sediment from the upcoast
beach to various degrees, depending on the structure's angle with respect
to the shoreline and the incident wave angle.

The effects of groins adjacent to the weir section were examined
with regard to providing additional fillet storage and reducing the
sediment movement in an oceanward direction along the jetty. Positive
results were found for each variation tested.
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PREFACE

The model investigation described in this report was performed for
the U. S. Army Coastal Engineering Research Center (CERC), Fort Belvoir,
Va., as part of the research work unit Weir Jetty Orientation and
Elevation. Authorization for the model study was received 5 May 1977.
The study was conducted in the Wave Dynamics Division of the Hydraulics
Laboratory, U. S. Army Engineer Waterways Experiment Station (WES),
during the period June 1977-June 1979 under the general direction of
Mr, H. B. Simmons, Chief of the Hydraulics Laboratory, and Mr, F. A,
Herrmann, Jr., Assistant Chief of the Hydraulics Laboratory. The testing
was conducted by members of 'the Wave Processes Branch (formerly Oceans
and Inlets Branch, Dr. C. L. Vincent, Chief) under the direction of
Dr. R. W. Whalin and Mr. C. E. Chatham, former and acting Chiefs of the
Wave Dynamics Division, respectively. Testing was conducted by Mr. W. C.
Seabergh, Project Engineer, with assistance from Mr. E. F. Lane and
Mr. J. W. McCoy, Engineering Technicians. This report was prepared by
Mr. Seabergh.

During the conduct of this study CERC technical monitoring
was performed by Dr. R. L. Weggel, Mr, Phillip Vitale, and Mr, M.
Janiszewski. Dean Morrough P. O'Brien and Professor Robert G. Dean
provided helpful comments in the planning of the study.

Commanders and Directors of WES during the study were COL John L.
Cannon, CE, COL Nelson P, Conover, CE, and COL Tilford C. Creel, CE.

Technical Director was Mr. F. R, Brown,
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CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI)
UNITS OF MEASUREMENT

U. S. customary units of measurement used in this report can be con-

verted to metric (SI) units as follows:

Multiply By To Obtain
cubic feet 0.02831685 cubic metres
cubic feet per second 0.02831685 cubic metres per second
cubic yards 0.7645549 cubic metres
cubic yards per second 0.7645549 cubic metres per second
feet 0.3048 metres
feet per second 0.3048 metres per second
feet per second per 0.3048 metres per second per
second second
inches 25.4 millimetres
square feet 0.09290304 square metres



WEIR JETTY PERFORMANCE: HYDRAULIC
AND SEDIMENTARY CONSIDERATIONS

Hydraulic Model Investigation

PART I: INTRODUCTION

Background

1. Traditionally, jetties have been used to stabilize the location
of a channel and to wmaiatain channel dimensions to safely accommodate
vessels of a given size, Jetties are normally constructed of quarrystone
and flank both sides of the desired channel alignment, extending from the
shoreline to a depth usually governed by the desired depth of the en-
trance channel, A rule of thumb used in the past for shallower channels
has been to extend the jetties to the depth contour corresponding to the
entrance channel depth., However, with the advent of deeper channels for
larger vessels this rule of thumb has often been disregarded due to the
large expense of constructing longer jetties in much deeper water.

2. The sediment~laden coastal environment in which jetties are
constructed contains the sediment-moving forces of wind waves, longshore
currents, tidal currents {on the ocean coasts) or seiche currents (on
lake coasts), and wind. The net result of jetty construction in this
environment usually is the impoundment of sand against the jetties. If
there is a net movement of sand in one direction along the coast, the
impoundment on the updrift jetty side may increase until sand is able to
move around the oceanward jetty tip and into the navigation channel. On
the downdrift side of the jetty system erosion of the shoreline occurs,
since the jetties have interrupted the normal supply of sand that is
transported longshore. It must be kept in mind that the conceptual
notion of upcoast and downcoast drift is quite idealized. In reality
sand is transported in both directions and it is likely that a fillet
will develop on both sides of the jettied inlet (the larger fillet on

the updrift side), and the more nearly balanced the north and south



transport rates, the more likely that erosion can occur on both sides of
the inlet,

3. One of the shortcomings of typical parallel jetties is that
there 1s no sheltered location for a dredge to operate when it is neces-
sary to bypass sand. One concept to overcome this shortcoming is the
weir jetty system. A weir jetty is defined here as a shore-—connected
jetty structure, usually of rubble-mound construction, whose shoreward
end is constructed to an elevation such that it acts as a weir, and water
and sediment can bhe transported over this portion of the structure for
part or all of a normal tidal cycle by tidal and wave-generated currents.,
The weir itself can be constructed of rubble-mound stone or, for more
accurate elevation control, can be constructed of concrete or metal sheet
pile. On the lee side of the weir a deposition basin may be dredged to
act as a settling basin for sediments passing over the weir. The weir
acts as a breakwater for waves and provides a semiprotected area for
dredging of the deposition basin when it has filled. The basin is
dredged to store some estimated quantity of sand moving into the basin
during a given time period (i.e., storage of 6 months, 1 year, 2 years,
etc.). A hydraulic dredge working in the semiprotected waters can by-
pass or backpass to mitigate potential beach erosion. In this way the
inlet may act as a source of sand instead of a sink. The jetty system
may have one weir on the updrift side of the channel which will be in-
creasingly effective as longshore transport becomes more nearly unidirec-
tional. For a jettied system with a near balance of longshore transport
rates, consideration should be given to a weir section in both jetties.

4, This concept has been used recently with varying degrees of
success., The idea originated at Hillsboro Inlet, Fla., as far as sand
bypassing applications are concerned; however, weir jetties were con-
structed at Charleston Harbor as early as the 1800's to induce a net ebb
flow in the region between the jetties (Figure 1). These weirs were at

-13 ft* below low water elevation and thus the predominant ebb flow

* A table of factors for couverting U. S. customary units of measure-
ment to metric (SI) units is presented on page 3.



Figure 1, Weir jetties at Charleston Harbor

flushed channel sediments oceanward (Mason 1977). Hillsboro Inlet is
bounded on the upcoast side by a rock reef which is an extension of the
shoreline near the inlet (Figure 2). Longshore drift passed over the
reef into a basin dredged behind it. Details of this and other weir
jetty projects at Masonboro Inlet, N. C., Perdido Pass, Ala., East Pass,
Fla., and Ponce de Leon Inlet, Fla., are presented in Weggel (1981).
Parker (1979) also presents an informative summary of welr jetty

projects. Figure 3 shows the weir jetty system at Murrells Imnlet, S. C.



Figure 2, Hillsboro Inlet, natural weir jetty

Figure 3. Murrells Inlet weir jetty



Purpose of Study

5. This study was performed in order to evaluate the effect of

the variation of a number of design parameters upon the capability of a
welr jetty system to function as an efficient sediment-handling system.
The experimental procedure, discussed later, was to construct a fixed-bed
model of a generalized inlet entrance and to evaluate various configura-
tions through injection of a tracer material and the simulation of tides
and wind waves and their associated hydraulic currents, Tmportant
parameters to be ianvestigated were weir orientation, weir elevation, and

weir length,



PART II: THE MODEL

Design

6. Model dimensions and scale were based on reproducing realistic
parameters for inlet width, bay size, jetty length, and offshore bathym-
etry. The model was constructed to an undistorted scale to assure simul-
taneous similitude of both diffraction and refraction.

7. A scale of 1:100 was selected based on model scale requirements
for accurate reproduction of waves and curreats and size of the area and
jetty system to be modeled. Figure 4 shows the test basin with a typical
jetty system layout. The inlet was shifted laterally from the center of
the test basin to maximize the upcoast beach length. Any larger model
scale would not have provided a sufficieﬁt upcoast shoreline nor provided
a realistic bay size (in the facility used) behind the inlet. A smaller
scale model would have resulted in excessive viscous frictioa signifi-
cantly affecting wave propagation.

8. TFrom an extensive examination of prototype inlets, dimensions
considered representative of typical breadth, shallow inlet channels were

selected as follows:

Maximum cross section at throat 21,000 ft2
(trapezoidal channel)

Spacing between jetties 1200 ft

Chaanel depth 21.5 [t

Jetty length (measured oceanward 2600 ft

from the high water line)

The weir jetty was constructed in the model of sheet metal and rvock to
represent a prototype jetty with a concrete sheet pile weir and rubble~
mound construction both landward and seaward of the weir. Elevation of
the rubble portion of the jetty was +10.0 ft mean sea level (msl) and

the elevation of the weir was 0.0 msl or +2.5 ft mean low water (mlw),

It was decided to model a concrete sheet pile weir in the prototype

(such as Masonboro Inlet, N. C., Perdido Pass, Fla., and East Pass, Fla,)

instead of the rubble-mound type (such as Murrells Inlet, S. C.) in
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order to have better control of elevation in the model which would con-
tribute to more accurate measurements of head difference and flow across
the model weir. The jetty had an impermeable core in the model so that
flow through the channel and over the weir could be more accurately
quantified. An average reflection coefficient of 0.30 was measured for
the model jetty, a value believed to reasonably represent reflection in
the prototype (Thornton and Calhoun 1972),

9, Examination of Figure 4 shows that the bathymetric contours
were parallel to the shoreline. This bathymetry was chosen to maintain
the same bottom slopes adjacent to various structures and to easily and
cost effectively modify the structural configuration of the weilr jetty
system. Usually as one approaches an inlet, the bathymetric contours
indicate an accumulation of sediments seaward of the inlet., Conse-
quently, the seaward terminus of the model jetties is in relatively
deeper water than the prototype might be, This difference between
the model and typical prototype jetties is probably unimportant to most
hydraulic tidal phenomena, but it may be important relative to wave
refraction and sediment movement near the seaward terminus of the
jetty structure., There will be some further discussion of this point
later in the report. Idealized, parallel contours and the absence of
an offshore bar made comparisons between various structural configura-
tions easier. It might be desirable in a later study to repeat certain
tests with seaward-directed bottom contours near the inlet and an off-
shore bar.

10. The model was designed to realistically reproduce tidal
currents through the inlet and over the weilr section. The bay area
was sized to accommodate the expected tidal prism of an inlet with the
given cross section described earlier and as related by O'Brien's
(1969) empirical relationship between the equilibrium minimum cross-—
sectional flow area below mean sea level Aé (ftz), and tidal prism

P (ft3): E

* For convenience, symbols and unusual abbreviations are listed and
defined in the Notation (Appendix B).

11



A. = 4.69 x 10°% p0-83
CE

(for jettied inlets) (1)

Bay size was selected so it would fill completely, thus providing an
inlet with a high Keulegan XK , or repletion coefficient, where K 1is

defined by 0O'Brien and Dean (1972) as:
A 2ga 1/2
K = I —~(—:‘ ° (2)
ZHaO Ab F

T = tidal period, sec

in which

a = ocean tidal amplitude, half range, ft
AC = cross—sectional area ofzinlet, ft2
Ab = surface area of bay, ft
g = acceleration due to gravity, ft/sec2
F = inlet impedance = Ki + Ke + fLC/aRC
Ki = inlet entrance loss coefficient
Ke = inlet exit loss coefficient
f = Darcy-Weisbach friction coefficient
o = hydraulic radius of flow area, ft
o " channel length, ft

It was also desirable to model a low K wvalue inlet because of the
significant change in velocity-tidal elevation relationship with a
significant change in K which would in turn produce difterent tflow
conditions at the weir section. Examining the expression for
Keulegan's K , it is noted that K is inversely proportional to Ab
If all other terms in the expression for K are held constant, from

a graph of ab/a0 versus K from Dean (1971), where a = tide ampli-
tude in bay shown in Figure 5, it can be found that:

a
0.75
;EzO.SK for 0.2 <X < 0.8 (3)

o

12
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Also the tidal prism P can be defined as:

Poa -a ()

Substituting in the expression for K , it can be found that

0.25 (5)

Therefore while trying to reduce K by increasing bay area, the tidal
prism would be increased. Thus in changing from the high K wvalue (say,
1.75) to a low K wvalue (say, 0.2), the tidal prism would increase by a
factor of 2. The increase in tidal prism would mean an increase in
velocity to values double the high K wvelocity values (since the area,
AC , is fixed)., Since the high K inlet is designed to have an area in
equilibrium with its tidal prism, which in turn would have maximum veloc-
ities of 4 to 5 fps (prototype), then velocities of 8 to 10 fps would
occur for the low K dinlet, much too high for an equilibrium condition.

In order to reduce this prism increase and its associated velocity

13



increase, it was felt an increase in F would be appropriate. This was
performed by adding roughness bayward of the inlet throat. The entrance
channel between the jetties was left as is so that physical flow rela-
tionships between the weir and entrance channel would be unchanged from
the high K inlet condition,

11, The creation of the low K inlet condition required the use
of a storage sump at the rear of the bay. Two pumps and two programmable
flow controllers were used to remove water from the bay during flood
flow and store it in the sump. The same quantity that was removed was
returned to the bay during ebb flow. Thus the bay tide range was reduced
(producing a smaller K value) while about the same tidal prism of the
high K inlet was maintained, thus simulating a bay of greater surface
area.

12. As discussed previously, a 1:100 scale was chosen for the
model, TFrom this scale the following relations were computed based on

the Froudian law of similitude:

Model :Prototype-
Characteristic Scale Relation
Horizontal length LH = 1:100
Vertical length LV = 1:100
Surface area LHLH = 1:10,000
Volume LHLHLV = 1:1,000,000
Velocity Lé/z = 1:10
. 3/2
Discharge L""L_ = 1:100,000
\ H
Time--tidal wave L Lml/2 = 1:10
HV
Slope LVLH = 1:1
Time--wind wave LVL‘-,I/2 = 1:10

14



One prototype tidal cycle (semidiurnal) of 12 hr and 25 min was re-

produced in the model in 74.5 min.

Model Appurtenances

13. The model was equipped with the necessary appurtenances to
reproduce and measure all pertinent phenomena including tidal eleva~
tions, current velocities, waves, and sediments used in shoaling tests.
Apparatus used in connection with the reproduction and measurement of
these phenomena included a tide generator and recorder, velocity
meters, wave generators, wave gages, and tidal gages,

Tide generator

14. The model was equipped with an automatic tide generator
designed and constructed by the U. S, Army Engineer Waterways Ex-

periment Station (WES) and is shown schematically in Figure 6. The
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- Figure 6. Automatic tide generator
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five major components of the system were:

a. The program cam.

b. The differential amplifier and power supply.

c. The bubble tube positioner,

d. The hydraulic-pneumatic amplifier.

e, The hydraulic cylinder and control gate assembly.
When the differential amplifier detected a difference between the water
level sensed by the bubble tube positioner and the desired water level
indicated by the program cam, a signal was transmitted to the hydraulic
cylinder to alter the position of the control gate. A feedback control
loop allowed time for the model to respond to the change in gate posi-
tion before the next signal was accepted.

Velocity meters

15, Velocities of model tidal currents were measured with minia-

ture Price-type current meters (Figure 7). The Price~type meter cups

Figure 7. Miniature Price~type current meter
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were about 0.04 ft in diameter, representing 4.0 ft vertically in the
prototype. The center of the cup was about 0.045 ft from the bottom of
the frame, representing 4.5 ft in the prototype. 1In a vertical plane,
the entire meter occupied a space of about 3 by 7 ft when scaled to the
prototype.

16. Velocities in the regions of wave-generated currents were
usually measured by the use of dye since depths were shallow and the flow
was turbulent. Dye movement was timed with a stopwatch over selected
distances marked on the model bottom, and velocities were calculated
from these measurements.

Photographic system

17. Surface current velocities were recorded photographically by
a group of cameras mounted above the water surface of the model, with
their shutters tripped simultaneously by an electronic timer to provide
a time exposure of confetti float movement. An electronic strobe light
was flashed near the end of each exposure so that a bright spot was
recorded near the tip of the float streak, indicating the direction of
movement. Lengths of streaks shown on the photographs can be converted
to velocities when used with a scale shown below each set of photographs
(Photos 1-59).

Wave generators

18. Wave action was reproduced in the model with 90-ft-long
(upcoast) and 40-ft-long (downcoast) wave generators located at appropri-
ate angles to the shoreline, Vertical plunger-type wave generators
(Figure 8) were used and could be adjusted quickly to generate the wave
height and wave period required.

Automated Data Acquisition
and Control System (ADACS)

19, This system (designed at WES) was used to secure wave height

data at selected locations in the model. Through the use of a mini-
computer, ADACS recorded onto magnetic tape the electrical output of
parallel-wire, resistance~type sensors (Figure 9). These sensors mea-
sured the change in water-surface elevation with respect to time. The

magnetic tape output of ADACS then was analyzed by computer. A detailed

17



Figure 8, Vertical plunger wave
generator

Figure 9. Wave gage
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discussion of this system is found in Durham, Greer, and Whalin (1975).
Tide gages

20. Tidal-stage history was measured by the use of an electronic
system consisting of a transmitter (Figure 10) and a recorder (Fig-
ure 11) with a telemetering circuit consisting of two selsyn motors,
one in the transmitter and the other in the recorder, connected by an
electrical cable. The tidal stage transmitter, positioned over the
desired data gathering point, measured the water-surface elevation by
means of an electronic sensing probe and transmitted this elevation
to a recorder located in a control or instrument house. An ink pen

continuously recorded the water-surface elevation on a chart that was

PRECISION
SCREW

TRANSMI TTING
SELSYN

REVERS/IBLE
MOTOR

PROBE- HEAD

H529-3578

Figure 10, Water level transmitter of
tide gage
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turned automatically at a preset rate to give a plot of water-surface
elevation as a function of time. Portable point gages also were used

to measure tidal elevations at other points as required.
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PART TIII: THE TESTING PROGRAM

Hydraulic Tests

21, Tests were divided into two categories, The first, hydraulic
testing, focused on flow over the weir due to tidal currents. Two inlet
types were modeled, as discussed in the section on model design, Head
differences across the weir and velocities over the weir were measured
and unit discharges and flow volumes over the weir were calculated. In
order to study the effect of various entrance widths on flow over the
weir, a series of tests was run in which the entrance cross-sectional
area at the oceanward end of the jetty was reduced, These detailed hy-
draulic tests were run using the Plan 1 jetty system shown in Fig—
ures 12a and 12b. The weir was perpendicular to the shore and the
600-ft-long weir section was initiated at the minus 10-ft contour.

This weir location was selected in an attempt to provide a region for

a storage fillet to form upcoast of the weir section between the minus
10-ft contour and the initial water line so that when waves from down-
coast occurred they could transport some material back upcoast and at-
tempt to restrict the deposition basin to capturing as near as possible
the net drift rather than the total downcoast component of drift. Also
included in the hydraulic portion of testing was an examination of wave-
induced currents along the upcoast jetty and shoreline for both tidal
and nontidal conditions. Various upcoast jetty structures were investi-

gated in this phase of testing.

Beach Response Tests

22, The second category of testing was beach response testing,
wherein a beach composed of a tracer material was placed on the concrete
model contours. The beach extended seaward to the outer limit of the
breaker zone. During testing, tracer material was fed at the upcoast
end of the beach, and tracer movement was observed by surveying and

photographing the beach planform and measurement of transport over the

21
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Figure 12, Plan 1 weir jetty system
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weir. Tests were run for three different jetty configurations which
included four different weir section-shoreline angles. The second and
third jetty configurations are seen in Figures 13a and 13b and l4a-f
and are identified as Plan 2 and Plan 3. Plan 3 had five variations,
including two weir angles of 30 and 45 deg., The Plan 2 weir angle was
60 deg as was the entire jetty structure. Plan 3 jetties all had an
oceanward jetty trunk perpendicular to shore, This was necessary in
order to accommodate such small angled weirs. A 45- or 30-deg angle the
entire length of the upcoast jetty would extend too far upcoast to be
practical. Thus, these combinations of weir angles and jetty trunk
angles seemed appropriate in order to minimize as much as possible the
upcoast extent of the jetty system., In the case of the 90~ and 60-deg
welr angles, it was felt that an angled oceanward jetty trunk was neces-
sary to provide a protected region, which was offset from the channel,
for the deposition basin. This would reduce wave activity in the basin
resulting from waves entering between the jetties and also reduce the
chance of tidal currents cutting through the basin. Plans 34, 3B, and
3D involved spur structures, which in the case of 3A and 3B were to aid
in forming a large storage fillet or in the case of 3D to attempt to
reduce any tendency for material to bypass the weir and move along the

jetty toward the channel.
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PART IV: HYDRAULIC TESTING

23, The model was capable of reproducing the hydraulics of two
types of inlets (see model design section): (a) an inlet character-
ized by a Keulegan K of 1.75, indicating that the bay completely fills
producing a bay tide curve (compared with the ocean tide curve) as shown
in Plate 1 and (b) an inlet with K = 0,52 indicating the bay only
partially fills and produces a bay tide curve as shown in Plate 2. The
importance of these two inlet types in this study lies in the differ-
ent velocity~tidal elevation relationships that occur for the two dif-
ferent X wvalues. For the high K inlets, the head difference between
ocean and bay tides reverses near times of high and low water, and
therefore the flow reverses from flood to ebb or ebb to flood at times
of high and low water, respectively. Also maximum flood and ebb currents
in the inlet occur at about midtide. For the low K inlet, the head
difference between ocean and bay tides reverses at times closer to
midtide. Maximum flood and ebb currents occur at times closer to high
and low water, respectively, than for the high K inlets. Plates 3-8
show velocities taken at gage locations 1-6 (see Figure 4 for locations)
in the inlet gorge and at the oceanward end of the jetties. The shift
in velocity phase for the Plan 1A (low K) inlet relative to the Plan 1
(high K) inlet is shown.

24, Integration of flood and ebb velocities for the basic Plan 1
and 1A conditions indicated that the tidal prism for Plan 1A was larger
than that of Plan 1 by about 29 percent. This was the result of not in-~
creasing F (inlet impedance) enough (see paragraph 10) in order to
obtain a prism in equilibrium with the fixed minimum area. However,
rather than continue trial and error testing to increase F , it was
felt that the primary purpose of the change in K (to investigate
the change in velocity phase with respect to water level) could be
achieved without an exact duplication of the tidal prism. Also the
testing concerning reduction in entrance channel area at the oceanward
end would cause tidal prism changes which would have required extensive

frictional adjustments. A means of adjusting the velocities for direct
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comparison was developed and is discussed later.

25, Plates 9, 10, and 11 show tidal elevations at various loca-
tions in the model (see Figure 4 for locations). Gages 10 and 11 show
the changes in bay tides between Plans 1 and 1A. Gages 4, 5, and 6 at
the inlet throat, gage 2 at the jetty tip, and gages 7 and 8 at the weir
show smaller reductions for the Plan lA condition. Gage 9, a control

gage, indicates the ocean tides for the two tests were similar.

Flow Over the Weir

26, Detailed testing of flow over the weir was conducted for the
Plar | and 1A jetty system for tidal flow conditions simulating a 5-ft
ocean tide range with the weir elevations at mean tide level (mtl).
Weir widths were 610 and 300 ft, with the latter achieved by closing off
the oceanward side of the weir. After the initial testing for the
Plan 1 and 1A conditions, the cross-sectional area at the jetty tips was
reduced since there are many possibilities of various cross-sectional
areas in this region of a jetty system (i.e., dependent upon shore
bottom slope, existing shoals, and channel dimensions). Ratios of area
at the jetty tip to the area at the inlet gorge (the minimum cross—
sectional area of the entrance channel) were 1.48 (with no reduction in
area at the jetty tip), 1.03, and 0.77. These reductions changed the
inlet hydraulics, producing new Keulegan K values.

Tidal elevations and head
differences across weir

27. Tidal elevations were collected above the weir crest and at
gages 7 and 8, located 100 ft (1 ft in model) on the oceanside and bay-
side of the center of the weir section. Bay tides were monitored to de-
termine the change in inlet hydraulics. Head differences across the weir
between gages 7 and 8 are plotted in Figures 15 and 16 for the Plan 1 and
1A conditions, respectively. Figures 15 and 16 show that as the jetty
entrance is restricted and Keulegan K reduced, the head difference
across the weir is increased and occurs for a longer period. Flow over

the weir starts just after 0.25 of the tidal cycle, when the tidal
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elevation is just above 0.0 mtl., Flow stops about 0.70, just before the
ocean tidal elevation has fallen to 0.0 mtl. Table 1 shows the Keulegan
K value for each condition as determined from the ratio of bay to ocean
tide range in concert with Figure 5. Comparisons between Plan 1 and lA
tests (Figures 15 and 16) show that as the Keulegan K value was reduced,
flood flow head differences increased in magnitude and duration while

ebb flow head differences decreased in magnitude and and duration.

Among the individual plan tests, Plan 1 tests showed some variations
indicating slight negative head increases with reduction in jetty opening.
The data show that reduction in weir length did not produce significant
differences in tidal elevations and head differences across the weir.

In the initial discussion of velocities over the weir, the basic Plan 1
and 1A velocity conditions (i.e., no reduction in area at the jetty

tips) are compared.

Tidal velocities across weir

28, Velocities across the weir were studied by use of paper
floats due to the limited depth over the weir section. Velocities were
measured every 100 ft (1 ft in model) along the weir. It was noted that
tidal flow over the weir was uniformly distributed across the width.
Figure 17 shows the average velocities and unit discharges over the weir
for the basic Plan 1 and 1A conditions during the period of tidal flow
over the weir. The unit discharges were calculated by multiplying the
average velocity by the flow area above the weir at a given tide stage,
then dividing by the length of the weir, or simplifying this, the unit
discharge is equal to the average velocity multiplied by the depth over
the weir crest at a given time. As implied by the previous examination
of head differences, flood velocities for the high K dinlet (K = 1,75)
occurred for a period just over 0,2 of a tidal cycle, ending just after
high water in the ocean. Peak average flood velocities were 3.0 fps.
Ebb flow duration was 0.2 of a tidal cycle for the base high K dinlet
with a peak average velocity of 0.9 fps. The low K dinlet velocity
measurements indicated a flood current duration of 0.35 of a tidal cycle
with maximum average currents of 3.6 fps. The above maximums are not

directly relatable since the low K inlet had a slightly larger tidal
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prism than the high K inlet. An adjustment to the velocities making

them directly relatable may be based on Keulegan'’s (1967) expression

TQ
m —
P = C (6)
with
Q, = maximum discharge, ft3/sec
T = 3.1416
C =

dimensionless number, a function of the Keulegan K

This can be written

Vo = Th 7



Vm = maximum average velocity, fps
Vm is directly proportional to P and making the assumption that Vm
applies to flow over the weir as well as flow through the inlet channel,
velocities can be adjusted by proportion of the measured tidal prisms.
The Plan 1 velocity is used as the reference velocity since these veloc~-
ities are in agreement with an equilibrium inlet. Table 1 shows the
adjusted velocities for all testing. Vm for Plan 1A base condition
adjusts from 3.6 fps to 2.8 fps for flood flow and from 0.6 to 0.5 fps
on ebb flow.

29. The width at the jetty tips was incrementally reduced from
1200 ft to 800 ft to 600 ft producing ratios of the area at the jetty
tips to the minimum cross-sectional area at the inlet gorge, bayward of
the weir section, of 1.48, 1.03, and 0.77, respectively. This was done
in order to simulate a reduction in entrance channel area oceanward of
the weir section which might occur naturally due to shoaling or other
channel area constraints. Plates 12 through 16 show the actual averaged
velocity measurements over the weir during the tidal cycle for the vari-
ous tests. The average velocity over the weir was determined by averag-
ing the velocities which were taken every 50 ft (0.5 ft for the model)
along the entire weir crest. Also shown are the water surface eleva-
tions at the weir crest. The plates show that as K decreases, the
duration of flood flow is lengthened and ebb flow decreased. Figure 18
shows the peak average velocity plotted against Keulegan K with group-
ing by ebb and flood flows and by area ratios. As the area ratio is
reduced, ebb and flood velocities over the weir are increased. The
dependence of maximum velocity on K for given ratios seems to increase
slightly as the area ratio becomes lower. A nondimensionalizing of
Figure 18 in Figure 19 presents a more general and possibly more useful
plot with a_ (tide amplitude) inciuded as a variable. This graph
should be used with caution since only one value of a, was tested.

30. Figure 20 is a dimensionless plot that indicates that as soon
as Al/AZ . ab/aO < 1.0 , velocities increase at a rapid rate. This is

due to a change in the control cross section from the inlet gorge to the
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jetty tips. As this occurs, the region behind the weir and between the
jetties responds more like the adjacent bay creating greater head dif~
ferentials over the weir, thus increasing velocities.

31. Table 2 shows the peak unit discharges, q , for each test
condition. These data show that for a given Al/AZ ratio, the lower
values have a greater flood q and a smaller ebb gq than the higher
inlets (because peak flood flows for lower K inlets occur at higher
water levels and peak ebb flows for lower K inlets occur at lower water
levels). This translates to higher flood flow volumes over a given weir
elevation for lower K inlets as seen in the table. Table 2 also shows
ratios of ebb flow volumes to flood flow volumes. For the higher K in-
lets, as Al/AZ is reduced, there is greater proportion of ebb flow over
the weir. This 1s not seen for the low K inlets since ebb flow volumes
are already minimized due to their occurrence near low water in the ocean

and the effect of the mean sea level weir, cutting off flow before a
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maximum can be realized. Finally the last column of Table 2 shows the
ratio of flood flow volume over the welr to the total tidal prism of the
inlet. The maximum value is 0.047 or 4.7 percent of the tidal prism, a
fairly low percentage. Other model studies at WES have shown a per-
centage for flood flow over the weir of 7 percent at Masonboro Inlet
and 15 percent for Little River Inlet (a dual-weir design).

32, Head differences for the Plan 2 weir jetty (Figure 13) showed
very little change from the basic Plan 1 measurements shown in Plate 17
and as a result, velocities were very similar (compare Plates 12 and
18). Because of this similarity, no detailed tests were counducted for
the other plans since it was felt that only minor changes would occur
for similar hydraulic conditions. Plate 18 also shows the effect of
lowering the weir elevation to -1.0 ft below mtl for Plan 2. The peak
velocity was increased from 2.9 fps to 3.8 fps, but the increased veloc-
ity only occurred over a l-hr period, with velocities at other times
close to those for the 0.0-mtl weir. An increase in flow area due
to a lower weir (-1.0 mtl) contributes to increased peak unit q and

total flow volume by a factor of l.4, neglecting velocity increases.

Flow Patterns for the Jetty Systems

33. This section discusses the flow fields around the overall
jetty systems due to either tidal currents or wave-generated currents or
a combination of both. The flow patterns were studied in two ways. The
first method used photography in which a 4-sec exposure was made of the
water surface covered with confetti. This produced streaks of movement
representing surface current patterns. The second method consisted of
injecting dye at given locations and timing its movement over a known
distance with a stopwatch. These measurements were generally considered
to be at middepth of the water column and are presented graphically as
velocity vectors.

34, Surface current photographs were taken at each O.l-increment
of the tidal cycle, but only photographs of 0.2, 0.4, 0.6, 0.8, and 0.0

parts of the tidal cycle are presented in this report. Low water in
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the ocean was at 0.0 and high water occurred at 0.5. Each photograph in-
dicates whether flood or ebb flow is occurring. Also, near the end of
each exposure a strobe light was flashed to produce a bright spot along
the trajectory of the surface float:which would give an indication of
direction.

35. The initial discussion focusses on tidal velocities.
Photos 1-20 show surface currents for Plans 1, lA, 2, and 3, in that
order. A criterion to consider when evaluating the data is the desir—
ability of maintaining the major portion of ebb flow and flood flow
within the navigation channel in order to provide the least interference
to the deposition basin where sediment should remain until dredged. If
tidal flows meandered from the channel into the basin, sediment might be
eroded and redeposited in the channel.

Tidal-surface currents

36, Comments concerning each photograph are listed below, after
which further discussion will follow, See the photograph for test

conditions.,

Photo
Plan No. Comment

1 1 Flood current migrated into the deposition basin before
flow over weir began.

2 Flow entering between the jetties was concentrated in
the channel, as flood flow over the weir had begun.
Flow over the inner one~half of the weir was directed
toward the bay. Flow over the outer one-half of the
weir first turned seaward, then was entrained with the
channel flood current; flow approaching the jetty
from upcoast was split about one~third the distance
down the outer leg of the jetty. The inner third ap-
proached the weir while the outer portion entered
between the jetty tips,.

1 3 Early ebb flow showed no flow over the weir but a
slight deflection of the ebb jet toward the inside of
the upcoast jetty.

1 4 Near peak ebb flow currents were exiting fairly
uniformly through the channel except for a slight de-
flection of the ebb jet toward the inside of the
upcoast jetty.

1 5 Late in the ebb, flow was concentrated in the channel.
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Photo
Plan No. Comment

1A 6 As a result of the change in inlet hydraulics (smaller
K) the Plan 1A flocod velocities were just starting and
concentrated near the upcoast jetty since the momentum
of the ebb currents in the main channel had impeded
early flood flow in that region.

1A 7 Flood flow in the main navigation channel was well
aligned.
1A 8 Flood flow was well aligned with the channel and flow

over weir was still occurring.

1A 9 Ebb flow was well aligned with the channel except for
a small deflection toward the outer portion of the
upcoast jetty. An eddy region existed over the
deposition basin.

1A 10 Ebb flow was well confined to the channel.

2 11 Some movement of early flood flow toward the basin
was seen, though not as much as with Plan 1 (Photo 1).

2 12 Flow over the weir had begun and tended to turn ocean-
ward, then bayward as it became entrained with flow in
the navigation channel. Ocean flow approaching the
weir was similar to that of Plan 1 (Photo 2). Note
low velocities along beachline.

2 13 Farly ebb currents were aligned fairly well with
the channel.

2 14 Ebb flow was well aligned with the channel. No move-
ment over the basin was occurring.

2 15 Same comment as for Photo l4.

3 16  Early flood currents entered the channel uniformly.

3 17 Flow over the weir was occurring, flowing bayward

into channel.

3 18 During early ebb flow some flow was diverted from the
channel to the outer portion of the weir and oceanward.
The outer portion of the weir was closer to the channel
than the Plan 1 or 2 weir. This flow, however, occurred
only in the outer corner of the deposition basin.

3 19 Ebb flow was totally confined to the main channel.

3 20 Same comment as for Photo 19.

In summary, these photographs indicate that the Plan 3 system provided
the best concentration of ebb and flood currents in the channel, but

was the only case where early noticeable ebb currents flowed over the
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weilr section since the outer portion of the weir was closer to the chan-
nel. It appears that the lower K dinlet of Plan 1A shows better flow
alignment than that of the Plan 1 inlet. This is easily explained for
ebb velocities by the fact that ebb currents occur at lower water levels
for low K inlets than high K 1inlets and the currents would tend to
be confined more by the channel.

Surface currents
due to tide and waves

37. Photos 21-59 show both tidal currents and wave-generated
currents in the vicinity of the jetty systems. Waves of 10-sec period
(1 sec in model) were used in each case. Exact test conditions are
listed on each photograph. The flow trajectories appear rippled due to
their movement by the waves. Since the waves were 1 sec in period and
the exposure was 4 sec, each streak has 4 bumps. It should be emphasized
that these are surface currents. In the region of the breakers, the
surface floats occasionally were caught in the breaking wave crest and
did not follow the actual longshore current, Outside the breaker zone,
the float trajectories are considered representative of velocity direc-
tion throughout the water column. Two wave heights of 5 ft and 10 ft
(0.05 ft and 0.10 ft in model, respectively) were chosen to be repro-
duced for the 10-sec period. The 5-ft wave was considered a minimum
height wave to reproduce for the given model scale to ensure good
turbulent breaking conditions., Also the wave steepness of 0.010 (for
the 10-sec, 5~-ft wave) is a commonly occurring steepness on most sea-
coasts representing a swell condition. While the steepness of the
10-ft, 10-sec wave of 0.20 is not considered a very steep wave by most
criteria, its size should represent more stormlike conditions. Un-
fortunately, more wave conditions could not be reproduced due to time

and budgetary limitations. Comments on the photographs follow:

Photo
Plan No. Comment
1 21 There was a strong circulation pattern upcoast of the

weir jetty, due to the 10-ft wave with 2- to 3-fps
velocities over the weir and 3-fps currents along the
oceanward face of the weir jetty. Also, the flood
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Plan

Photo
No.

Comment

22

23

24

25

26

27

28

29

currents entering between the jetties were deflected
toward the downcast jetty.

Surface currents along the oceanward face of the up~-
coast jetty were reduced slightly since the tide
elevation had risen and flow over the weir was occur-
ring. While the photograph shows few trajectories over
the weir, there was significant flow. Waves breaking
over the weir made it difficult to maintain surface
floats in this region. There was a clockwise eddy in
the nearshore upcoast region adjacent to the weir jetty.

Ebb flow had begun and there were significant offshore
currents (3 to 4 fps) adjacent to the upcoast jetty.
There was no deflection of ebb currents from the bay
toward the deposition basin as there was for the no-
wave condition; however, there was a deflection of
channel currents toward the outer leg of the upcoast
jetty. Also, there were velocities of 3 fps on the
oceanward side of the weir flowing parallel to the weir.

Patterns for this ebb flow condition were similar to
those described for Photo 23.

As the end of ebb flow neared, the ebb currents were
somewhat confined to the downcoast side of the channel.
Wave generated currents were still strong along the
outside of the upcoast jetty.

Early in the flood flow the main channel flow was
shifted toward the upcoast side of the system by the
currents generated by waves from the downcoast direc-~
tion and the wave~-generated currents rounding the
downcoast jetty and penetrating into the channel, A
counterclockwise circulation cell was located upcoast
of the weir jetty from the weir section shoreward.
Oceanward, along the outer section of the weir jetty,
surface currents were generated shoreward and gradually
merged into the upcoast longshore drift,

Patterns similar to those in Photo 26 were seen for
this condition, which is later during flood flow. Flow
over the weir and into the basin appeared negligible
(compare with Photo 2, tide-only condition).

Early ebb flow was confined against the downcoast
jetty and eddying current patterns existed over the
deposition basin.

Ebb flow was similar to that in Photo 28, The flow
pattern upcoast of the jetty system was directed
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Photo
No.

Comment

30

31

32

33

34

35

36

37

38

39

40

41

42

upcoast except at the shoreward corner of the weir
jetty where a counterclockwise eddy still existed.

Late ebb flow in the channel moved close to the down~
coast jetty. Slow eddy currents existed over the
basin.

Upcoast waves during this early flood period increased
current activity in front of the weir due to the
incoming longshore current when compared with the tide-
only condition (Photo 11).

Flow over the weir was directed more toward the bay
entrance than for the no~wave condition (Photo 12).

Flow patterns for the 5-ft-wave condition were fairly
similar to the tide-only photograph except for the
longshore current in front of the weir.

As ebb flow developed, there was an offshore movement of
surface currents along the oceanside of the upcoast
jetty.

Late ebb flow was forced to the downcoast side of the
channel. The longshore current was deflected by the
upcoast jetty in the offshore direction.

The 10-ft wave created a circulation over the deposition
basin from waves overtopping the weir. Channel flood
flow was shifted to the downcoast side.

Strong offshore currents (3 to 4 fps) existed upcoast of
the weir, even though flow over the weir had begun.

The early ebb jet was deflected downcoast. Strong
currents offshore of the weir jetty still existed.

Wave overtopping of the weir created a movement toward
the channel. Strong offshore currents existed upcoast
of the oceanward portion of the weir jetty.

Current patterns were similar to those in Photo 39
except near the inside of the oceanward portion of the
weir jetty where currents were approaching the jetty
then deflecting back to the channel,

The downcoast waves nullified the surface approach flow
around the upcoast jetty tip (compare with no-wave
condition, Photo 12). No eddy region existed at the
shoreward end of the weir jetty as it did for the

Plan 1 jetty with waves (Photo 26).

Flow over the weir was directed toward the bay rather
than toward the ocean before becoming entrained in
channel flow (compare with Photo 12).
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Photo
No.

Comment
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43

44

45

46

47

48

49

50

51

52

53

54

55

56

Early ebb flow showed a clockwise circulation over the
basin, compared with none for a no-wave condition
(Photo 13).

Ebb flow was more concentrated against the channel
side of the weir jetty than for the no wave condition
(Photo 14).

Greater current movement occurred in the deposition
basin due to waves overtopping the weir than was noted
for the same conditions in Plan 2,

Some of the longshore current moved past the oceanward,
upcoast side of weir and decelerated one-half way
seaward along the upcoast jetty. Also, currents over
the deposition basin were eddylike rather than directed
at the channel as in the tide-only condition (Photo 17).

Flow along the oceanward part of the upcoast jetty
has decelerated. The movement of early ebb flow over
the weir seen in the tide-only test (Photo 18) did
not occur with tides and waves.

Current movement upcoast of the oceanward end of
the jetty was somewhat erratic in pattern.

The greatest current activity was over the deposition
basin for this low water time since approaching wave
crests were almost parallel to the weir for this
orientation,

When compared with the 5-ft wave (Photo 45), the 10-ft
wave created increased currents along the entire
length of the upcoast jetty. When these currents ap-
proached the jetty tip, they flowed into the channel.

Flood flow over the weir was strong, but only that
portion at the oceanward end of the weir was directed
into the channel,

Early ebb flow had good alignment in the channel.

Surface velocities of 4 fps occurred along the
upcoast jetty.

No significant change from Photo 53, except that ebb
currents were slowing.

The 5-ft downcoast wave created no eddy regions near the
beach along the upcoast side of the weir.

A small eddy region occurred on the oceanward side in
the bend of the weir jetty.
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Photo

Plan No. Comment
3 57 Slight ebb-current movement occurred over the outer end
of the weir section.
3 58 Eddy currents existed over the deposition basin.
3 59 No significant change from Photo 58 was noted.

38. Waves significantly affected flow patterns along the oceanside
of the upcoast weir jetty, in the deposition basin, and at the oceanward
end of the navigation channel. Concerning the last item, Plan 3 showed
the least effect. Flow was usually straight and almost uniform across
the entrance since the parallel jetties confined the flow much more
effectively than did Plan ! or 2. On the outside of the upcoast weir
jetty there was considerable flow along the outer leg of the jetty for
all plans tested with the 10-ft upcoast wave, This might be significant
in regard to material bypassing the weir and moving oceanward along the
jetties and eventually into the channel. Plan 3 received more wave
activity in the basin than did Plan 1 or 2 due to its smaller acute
angle with the shoreline, but an eddylike circulation was usually main-
tained so that suspended materials would tend to settle in the deposition
basin rather than reach the channel. Downcoast waves for Plans 2 and 3
would easily remove sediments that accumulate upcoast, adjacent to the
weir section. Plan 1 showed a strong eddy region there, where the
downcoast wave (30~deg deepwater angle) did not produce a longshore
current in the upcoast direction. The following section will examine
the flow patterns upcoast of the weir jetty in more detail.

Dye streak velocity measurements

39, In order to examine the wave-generated velocity field on the
upcoast side of the weir jetty, dye was injected into the water column
throughout the depth and timed as it moved over a known distance.
Velocity vectors then were drawn showing location, direction, and magni-
tude for the individual measurements. Some measurements were made with
waves only to remove any influence of tidal currents; Plates 19-32 show

these data.

40, Plan 1. Plate 19 shows that for 10~ft, 1l0-sec upcoast waves
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during flood tide, velocities of a significant magnitude (3.3 fps,
prototype) flowed toward the Plan 1 jetty tip from the weir section
region and around the jetty tip into the channel. There was also an
oceanward directed current of 2 fps at the base of the weir section
while there was flow over the weir, a variation in 90 deg in flow direc-
tion through the water column. During ebb flow, with no flow over the
weir, the velocity at the base of the weir increased to 3.3 fps

(Plate 20). Also velocities at the outer jetty tip were directed

of fshore,

41, Plate 21 shows the circulation due to a l0-ft downcoast wave
for Plan 1. A counterclockwise circulation was noted at the base of
the upcoast jetty. A uniform longshore current was established about
1600 ft upcoast of the jetty.

42, Plan 2, The longshore current field due to a 5-ft, lO-sec
upcoast wave (no tide) is shown in Plate 22, Maximum currents were
shoreward of the breaker with a peak value of 2.9 fps. Once reaching
the jetty, flow was split between the weir and offshore along the jetty.
Maximum currents flowing oceanward were 1.4 fps. Plate 23 shows the
effect of increasing the wave height to 10 ft (no tide). Peak velocity
magnitudes were 5.0 fps in the breaker zone, 4.3 fps over the weir, and
4.5 fps oceanward along the weir. As flow progressed oceanward along
the jetty, velocities fell off initially but maintained maximums between
2 and 3 fps out to the jetty tip, even though depths were increasing and
the flow was spreading from a width of about 600 to about 1000 ft.

43, Plate 24 shows the velocity field for a 10-ft, 10-sec down-
coast wave for Plan 2. Velocities in the upcoast direction started a
little over 300 ft from the jetty.

44, Plate 25 shows velocities taken during the flood tide with a
10-ft, 10-sec upcoast wave. Velocities just oceanward of the weir were
slower than for the no-tide condition (Plate 23) since the tide was di-
verting more flow to the weir section, and further oceanward, velocities
with waves plus tide were higher than the waves-only condition since the
tidal flow was accelerating around the jetty tip. Plate 26, showing

velocities during the ebb tide, indicated an oceanward shift in breaker
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location due to lower water level and higher currents along the jetty
face moving oceanward.

45, Plan 3. Plate 27 shows the upcoast velocity field for Plan 3
for a no~tide condition with 5~ft, 10-sec waves from upcoast. Currents
approaching the weir were mostly between 2 and 3 fps. Movement oceanward
along the jetty leg was about 1 fps. With the wave height increased to
10 ft, Plate 28 shows maximum velocities of 6 to 7 fps approaching the
weir, 5 to 6 fps along the bottom adjacent and parallel to the weir, and
3 to 4 fps oceanward along the upcoast jetty.

46, A 5-ft 10-sec downcoast wave for Plan 3 produced no reversal
of currents shoreward of the weir as the Plan 1 and Plan 2 jetties did
(Plate 29) since the region was extended far enough out of the shadow of
the jetty. There was a reversal in the current direction at the ocean~-
ward end of the weir. Currents outside the breaker were low {(less than
1 fps).

47, Plate 30 shows the location of velocity stations for measure-
ments with upcoast waves aund a tide for Plan 3. Also indicated on the
plate is the usual velocity direction (variation in direction was on the
order of 30 deg). Plates 31 and 32 show the velocities each 0.1 of a
tidal cycle for both the 5-ft and 10-ft, 10-sec upcoast waves. Veloc-
ities for the 5-ft wave tended to be fairly constant in value throughout
the tidal cycle at most locations. Velocity magnitude decreased in an
oceanward direction to less than 1 fps at sta F and L. The larger wave
produced more variation in velocity during the tidal cycle. Sta J, K,
L, M, and N showed decreases during flood flow (to about 2.5 fps) and
increases during ebb (to about 5 fps), as the tide influenced flow
toward the weir during flood tide and away from it on ebb. Sta D, E, F,
and I, adjacent to the jetty, did not show much change during the tide
but maintained velocities in the 4-~ to 5~fps range at all times.

48, Summary. Comparing the dye streak velocity measurements for
Plans 1, 2, and 3 for 10-ft, 10-sec upcoast waves (Plan ! wave angle was
30 deg, while Plans 2 and 3 had 40-deg waves) and a 5-ft-tide range,
Plan 3 velocities were generally higher close to the oceanward portion

of the upcoast jetty and parallel to the weir at its base. This should
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be expected at the outer leg of the jetty due to the geometry of Plan 3
which promoted a higher concentration of longshore current at the bend
of the jetty. Plans 1 and 2 permitted greater expansion of this seaward
flowing current. Results also indicated that as the angle of the weir
and shoreward portion of the jetty was reduced from 90 deg (i.e., Plan 1
Plan 2, then Plan 3), there was an increase in seaward flowing current

at the base of the weir section.
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PART V: BEACH RESPONSE TESTS

49, This phase of the study was designed to aid in interpreting
the respounse of the beachline upcoast of the weir jetty for a variety of
jetty orientations and for both an upcoast aand downcoast wave direction.
The respounse of beachlines upcoast of a groin has been studied in math-
ematical formulation by a number of people, the method of Pelnard-
Considere perhaps being the best known. However, because of the complex
boundary conditious (which include movement of material over the weir)
and the ability of an undistorted physical model to reliably integrate
the effects of refraction, diffraction, and wave reflection, beach re~
sponse tests were performed to aid in examining relative differences in
weir jetty configurations on shoreline response. Such complex situations
are more reliably and more economically investigated in undistorted
physical models than in numerical models at this time. As mentioned
above, not only was an upcoast wave used to examine the formation of a
fillet, but a downcoast wave was also used in order to note the relative
ease with which material might be returned upcoast during a longshore
drift reversal. This can be an extremely important factor on coasts with
fairly frequent drift reversals. In such cases, drift reversals tend to
reduce the amount of material accumulating in the deposition basin and
thus reduce the amount of material that must be handled by dredging.

50. Before the beach response tests are discussed, an examination
of a possibly important mechanism occurring in the vicinity of the weir
jetty caused by the interaction of incident waves and waves reflected by

the jetty will be undertaken,

Short-~Crested Wave Field and Beach Interaction

51l. The formation of a short-crested wave field by the interaction
of incident and reflected waves and its effect on sediment transport has
been studied by Silvester (1975 and 1977), Dalrymple and Lanan (1976),
and Hsu (1975), among others. This study more closely compares with

that of Dalrymple and Lanan in that they performed laboratory tests with
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a movable-bed beach and observed the formation of beach cusps and rip
currents as a result of the incident wave~reflected wave interaction
with the shoreline. The weir jetty testing superimposed additional
boundary conditions with the introduction of a longshore current entering
the short-crested wave region from upcoast, and the weir section as a
portion of the reflecting structure downcoast.

52, Figure 21 shows the formation of the short-crested wave field

and its characteristic diamond pattern created by the interacting crests

UPCOAST SHORELINE }4————0{
DIRECTION ———* L L L L L L (L. Lt YY)

REFLECTING SURFACE

OF STRUCTURE \

LEGEND
INCIDENT WAVE Lj = INCIDENT WAVE LENGTH
o= REFLECTED WAVE L; = SHORT-CRESTED WAVE LENGTH
- === PATH OF MAXIMUM SHORT- L7 = CREST LENGTH

CRESTED WAVE CREST TRAVEL - piSTANCE BETWEEN MAXIMUM CRESTLINES

X = WIDTH OF CIRCULATION CELL ALONG SHORELINE

Figure 21, Short-crested wave field
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of the incident and reflected waves. Figure 22 shows a short-crested
wave field upcoast of the Masonboro Inlet weir during low water. By
following the path of the intersecting crests in Figure 21, the direc-
tion of the short-crested wave can be noted. For a uniform flat bottom
(no refraction), the path of the short-crested wave is always parallel
to the structure. For the relatively straight-sloped beach of this

study there was little deviation from a flat~bottomed condition in the

immediate vicinity of the structure,
-

Figure 22, Short-crested wave field at Masonboro
Inlet weir jetty
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53. TFigure 23 defines <« = acute angle between structure and
shoreline, © = acute angle between wave crest and shoreline, ¢ = angle
between wave crest and structure, and er = angle between reflected wave
crest and shoreline. Also shown are ranges of ¢ and ¢r for a given
o« and a range of 6 Dbetween 0 and 25 deg, a perhaps typical range of
wave angles near the shoreline. It can be shown from the geometry of
the intersecting wave crests that the incident wavelength Li and
celerity Ci can be related to the short-crested wavelength LS and

celerity CS by the expression

bR R S ®)
Ci i Li cos ¢ tan ¢

and this relation is derived in Figure 24 and plotted in Figure 25.

Using the expression from Wiegel (1964) for horizontal water particle
velocity in the direction of wave propagation as derived by Fuchs for the
short-crested wave and shown graphically in Figure 26, the maximum bottom
velocity (which occurs under the line of crest travel) is compared with
that for the incident wave in Figure 27. Two curves are shown--one for
complete reflection off the structure (Kr = 1) and one considering only
partial reflection of the wave (Kr = (0,3 , a value measured for the model
structure and a reasonable prototype value). These are linear theories
and the interaction of the incident and reflected waves probably becomes
a relatively nonlinear phenomenon. For usual values of 6 (i.e., O deg
< 8 < 25 deg), the greater maximum bottom velocities occur for structures
with larger values of « , that is, ones more perpendicular to shore.
Tempering this is the Mach reflection phenomenon which indicates that for
incident wave angles from O to 20 deg (the angle between the direction
of wave advance and the reflecting surface which is equivalent to ¢ = 70
to 90 deg) there is little or no reflection and for incident wave angles
of 20 to 40 deg (¢ = 50 to 70 deg) there is a reduction in reflected wave
height due to the formation of the '"Mach stem," a wave perpendicular to
the reflecting surface and from which the incident wave and reflected

wave extend (Weigel 1964). Thus there is most likely some reduction in
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REFLECTIVE STRUCTURE

2% 808 S80S /B

1. From basic physics, L BAG =L EAH =¢.

2. TFrom basic geometry it can be shown that ABCE 1s a rhombus and it
follows that BE 1is perpendicular to AC .

3. Also it can be shown from geometry that LL.ABF = LCAD and that
CFA_|_HAG .

4. DA 1is defined as the wavelength between two parallel wave crests
and is perpendicular to the crests.

5. It follows that L ABF = £LCAD from basic geometry.
6. AD = Li , incident wavelength.

BFE = Lg » short-crested wavelength.

AFC = L' , crest length.
7. (a) From stippled triangle

Li
cos ¢ = v
(b) From crosshatched triangle
CL'/2 L'
tan ¢ = L/2°1
s s

(c) Rearranging and substituting from a and b above, eliminating
L',
s 1

Li cos ¢ tan ¢

8. From 7a, cos ¢ = Li/L‘ and from Figure 21, L' = 2W , then

cos ¢ = —= or L. 1
2W Li 2 cos ¢
cs Ls 1
Figure 24. Derivation of expressi —_— e
8 xpression o, cos ¢ tan &
i i
and 1

LA
Li 2 cos ¢
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incident wavelengths versus ¢



Direction of Wave Propagation

i

Figure 26. Short-crested wave contours and particle
velocity orbits (from Wiegel 1964, after Fuchs 1952)

54



- Unasc = MAXIMUM BOTTOM VELOCITY AT A GIVEN
DEPTH FOR SHORT-CRESTED WAVE CREATED
BY INCIDENT AND REFLECTED WAVES

UyaL = MAXIMUM BOTTOM VELOCITY AT A GIVEN
DEPTH

¢ = INCIDENT WAVE ANGLE WITH STRUCTURE
2 |- Asc = SHORT-CRESTED WAVE AMPLITUDE

= INCIDENT WAVE AMPLITUDE
K, = REFLECTION COEFFICIENT OF STRUCTURE

Ao
g § o P«Sc; s
PP . ‘.0\
ey
_ 13A0)
1+ . 0'3 (ASC
Ky
o {USUAL RANGE OF ¢ FOR VARIOUS VALUES OF « OVER
USUAL RANGE OF 8 LE. 0° < § < 25°)
; « = 60° { '14— x = 900_———._-—_—~|
| x = 45° {
0 ' I = 30°1 { ) 1 I ] 1 )
0 10 20 30 40 50 60 70 80 90

¢, INCIDENT WAVE ANGLE WITH STRUCTURE, DEGREES

Figure 27. Ratio of maximum bottom velocity of short-crested
and incident waves versus ¢

the velocity field of the short-crested wave, and the <« = 90 deg struc-

ture probably does not produce significantly higher velocities than the

o

il

60 deg structure. Also the Mach-stem effect does not occur for the

!
i}

30 deg and 45 deg structures when waves are from the upcoast direc-
tion since ¢ 1is usually less than 50 deg.

54, From geometrical considerations,

W1

Li 2 cos ¢

9

)

where W , shown in Figure 21, is the distance between crestlines in the

short-crested wave field. TFigure 28 shows that for 0 < ¢ < 25 deg ,

the smaller « (the acute angle between this structure and the shoreline)

the closer the wave crest spacing. Figure 29 presents the same informa-

tion in terms of & . In terms of spacing of the intersection of the

crestlines with the shoreline, Figures 30 and 31 show spacing X ,
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defined in Figure 21,

¢ (Figure 30) and ©

relative to incident wave length Li in terms of

(Figure 31)., Figure 30 shows that the spacing of

the intersection of crestlines with the beach is closer together for

smaller values of ¢
intersection with the
shoreline) is at that
the wave 1s reflected
intersect the beach.

the shoreline follows

. Figure 3! shows that the closest spacing of crest
beach for a given « (structure's angle with the
angle of © which approaches « . When 6 > « ,
seaward and the short-crested wave field does not

The effect of the intersection of these crests and

55. Assuming that the incident wave is from the upcoast direction,

inducing a longshore
wave field approaches

shown in Figure 3Z.

current toward the upcoast jetty, the short-crested
the shoreline in the vicinity of the structure as

The velocity field along the bottom across a short-

crested wave frout shows that, under the crest, velocities are in an
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32. Interaction of short-crested wave
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onshore-offshore direction, and the ripple lines, perpendicular to these
velocities, also indicate this. Between one crestline and the next, the
bottom velocities vary from elliptical to alongshore to elliptical then

to onshore-offshore under the next crest. Figure 33 shows the ripple

Figure 33, Shoreline upcoast of Plan 1 jetty system for test 8

pattern for a glass bead test of Plan | just upcoast of the jetty similar
to the schematic diagram of Figure 32 where the alternating direction

of ripples can be noted. The actual transport of material is brought
about when the longshore current is superimposed on the short-crested
wave field. Circulation cells are formed because the short-crested

wave height varies along a line parallel to shore. Therefore, the higher
part of the wave along the crestline breaks earlier and moves shoreward,
creating a circulation flow to the zone of the lower breaker area similar

to that described by Bowen (1969). The flow is to the downcoast side of
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the cell due to the flow of the longshore current in that direction. The
result is the creation of a cusp. As the longshore current approaches
the upcoast jetty structure, it is deflected oceanward so sediment tends
to follow the lines of this circulation, and examples are shown in Fig-

ures 34-38 from testing performed with coal from the Plans 1-3 tests.

Figure 34. Offshore movement due to 5-ft, l0-sec
30-deg wave, Plan 1, test 3
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Figure 35. Offshore movement upcoast for Plan 1,
test 10

Figure 36. Offshore movement for Plan 2, test 11
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Figure 37. Offshore movement for Plan 3, test 12

Figure 38, Offshore movement for Plan 3C, test 18
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In each case the line of movement is parallel to the reflecting surface
which is causing the short-crested wave field. This offshore movement
can extend farther upcoast than the location where the main portion of
the longshore current is deflected seaward by the structure so that the
circulation cells are fairly strong. The spacing of the circulation
cells are governed by the distance between crestlines, W , and can be
determined by finding X in Figure 30 or Figure 31 for various values
of ¢ or 6 and Li .

56. Plates 33-105 show results of the beach response test,
most of which will be discussed later. For the present discussion
Plates 100 and 101 show sketches of the offshore movement of the tracer
sediment for Plans 1 and 2 for the smaller 5-ft, 10-sec wave condition.
There are locations where the parallel fingers of sediment intersect or
join together. These are locations where there is some lateral trans-—
fer of tracer from one finger to another, Plate 55 (a test for the
beads and a 10-ft, 10-sec wave) shows the fingers paralleling the outer
leg of the Plan 1 jetty. The material in all these fingers originated
from tracer moving offshore along the weir then gradually laterally
transferring upcoast from one finger to the next due to the reflected
wave energy off the jetty, although some of the tracer continued mi-
grating oceanward along a given sediment tracer finger. Therefore, in
this region of reflected wave energy, there was offshore-upcoast trans-
port of sediment. Figures 36 and 37 also show this mechanism of sedi-
ment movement.

57. Plates 102-105 show the approximate upcoast limits of the
short-crested wave field for the four basic jetty configurations studied.
The reflected wave has been refracted shoreward along the parallel con-
tours in each case, and the crestline travel stays almost parallel to
the reflecting surface., In Plan 1, the crestlines do not intersect the
breaker region for some distance upcoast. An interesting observation in
Plate 105 (Plan 3C, 45-deg weir) is the focussing of reflected wave
energy by the weir section along the shoreline.

58. The circulation cells (Figure 32) set up by the incident-wave
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reflected wave plus the incoming longshore current can probably be com-~
pared or identified with other coastal phenomena. Komar (1976) mentions
two ways to generate circulation cells along the shoreline. One is by
wave refraction, creating regions of high waves and low waves along the
coast. The other is the generation of standing edge waves by the
ordinary incident swell waves, which again will create regions of high
waves and low waves along the shoreline as they interact with the in-
coming swell, Clearly, the cell development noted in this study is a
third mechanism for creating high and low wave regions along the coast
but is not related to edge wave phenomena. The short-crested wave field
created by incident and reflected waves provides a high and low wave
region along the coast which is persistent in location (necessary Ffor
cell development) since the incident and reflected waves are of the
same period.

59. Observations of waves reflected off jetty structures and
their effects on the shoreline noted by others have been represented
in model and prototype work by Tanaka and Sato (1976) and in the pro-
totype by Penland (1979). Tanaka and Sato noted upcoast erosion on a
prototype jetty structure at Kashumro Port, Japan, which had an outer
part oblique to the shore and an inner part perpendicular to the shore.
In a model test of such a structure, where only waves normal to the
coast were generated, a current was formed flowing shoreward along the
structure, which, as it approached shore, turned upcoast then offshore.
Tanaka and Sato mentioned that reflected wave energy contributed 40
to 50 percent of the alongshore energy in the upcoast direction. No
tests were run with waves oblique to the shoreline which would probably
cause longshore currents approaching the structure to predominate over
the circulation cells caused by the reflected waves. Penland discussed
the reflection off the north jetty at St. John's River, Fla., and
its effect on an adjacent upcoast inlet, The reflection-generated
upcoast~-directed currents aided in the inlet's migrating upcoast.
In this case, the natural longshore current is interrupted by the
upcoast inlet so the reflected wave energy predominates in creating

an upcoast current.
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Preliminary Testing

60. The concept for the beach response tests was to inject a
tracer material onto the concrete bed of the model in the region upcoast
of the jetties and let the wave-generated littoral currents bring the
tracer to the jetty system. It then would be determined what percentage
of the tracer entered the deposition basin. Initially, it was decided
that the most important aspect of a tracer study would be to determine
the plan of the shoreline upcoast of the jetty system. It was thought
that a beach could be formed by feeding tracer at the upcoast end of the
model and subjecting it to wave action. This proved to be impractical
since the breaker zone was relatively wide on the 1:60 concrete beach
slope, and the material tended to move only at the location of the
strongest littoral currents, The solution to the problem was to mold a
beach of tracer material to a steeper slope than that of the model,
narrowing the surf zone and concentrating littoral currents. In order
to choose a suitable tracer material, two-dimensional beach profile
tests were conducted in a 2-ft-wide, 166-ft-long wave flume. These
tests are discussed in Appendix A and resulted in the selection of glass
beads with a specific gravity of 2.42 and a diameter of 0.13 mm. The
glass beads were used throughout six tests at which time it was decided
that operational and functional problems precluded further use of the
beads, and coal with a specific gravity of 1.35 and a median diameter of
0.50 mm was selected as the final tracer. Operational problems encoun-
tered with the glass beads were concerned with quantities of material on
hand and with the long response time required for the glass beads to be
transported in the model. This resulted in unreasonably and unneces-
sarily large costs for conducting model tests since similar movement and
conclusions could be reached using a coal tracer in a much shorter

period of time.

Detailed Beach Response Testing

61. Initial detailed beach response tests were performed with
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coal and plastic as additional quantities of glass beads had to be
ordered to form a beach. These early tests with coal and plastics were
run in order to develop test procedures and parameters.

Test conditions

62. The beach response tests were conducted with a constant water
level set at high water (+2.5 ft mtl)., Tides were not used until later
in the testing program, and then comparisons with nontidal tests of
similar conditions indicated there was not a significant difference in
the results. Constant high-water levels maximized material movement
over the weir. A deepwater wave angle of 30 deg was used initially for
both the upcoast and downcoast waves. Later in the testing, a 40-deg
deepwater wave angle was used. The wave period was maintained at 10 sec
for the prototype (1l sec for the model) for all testing. Deepwater wave
height was either 5 ft (0.05 ft for the model) or 10 ft (0.10 ft for the
model). Three different initial slopes for the molded beach were used
and are noted on the plates showing test results. During the tests the
shoreline planform was periodically measured from a reference line and
when an equilibrium planform for the upcoast wave was reached near the
weir jetty, the test was stopped and a downcoast wave was run. The
equilibrium planform was determined by repeated measurements of the
beach planform at 1-ft increments (model feet) from a shoreward reference
line at half-hour intervals of the test and determining the rate of
change at each location for each time interval. When the rate of change
was small or began oscillating plus or minus, a near-equilibrium planform
was assumed. In some tests the material moving over the weir was peri-
odically removed and measured, but in other tests it was permitted to
accumulate in order to note patterns of deposition. The 19 tests con-
ducted are reviewed in the following paragraphs and Table 3 summarizes
the testing. TFillet areas and deposition volume given in Table 3 are
presented in model dimensions and should not be extrapolated to proto-
type conditions for direct use in design or planning purposes but are
only to be used for relative comparisons.

Test 1 (Plan 1)

63. Plate 33 shows test conditions and the resulting planform for
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the 0,5 mm coal. The fillet formed by the upcoast wave was suall, ex-
tending 400 ft (4 ft for the model) upcoast from the jetty before re-
ceding behind the original shoreline for the next 700 ft., Also, the
fillet would not build out to the shoreward end of the weir section.

The relatively large storm wave (10 ft) was assumed to be the cause of
the limited amount of accretion. Plate 34 is a photograph of the region
after the upcoast wave. Interesting to note is the accumulation of ma-
terial in the shoreward end of the deposition basin behind the shoreward
edge of the weir and also the significant amount of material in the sea-
ward portion of the basin. Plate 35 shows the study area after the down-
coast wave had been run. Seventy-one percent of the fillet was eroded by
the downcoast wave (see Table 3 for details of testing). During the
test, feeding of the beach was by demand; that is, a uniform beach was
maintained at the initial waterline at the upcoast end of the beach.

Test 2 (Plan 1)

64. The upcoast wave was reduced to 5 ft from the previous test.

A much larger fillet was obtained (five times larger in area, see
Plate 36) even though the upcoast wave was run 1 hr less. The downcoast
wave removed all the fillet except for a small area adjacent to the jetty.

Test 3 (Plan 1)

65, Plastic was used for the same wave conditions as test 2.

Since only a limited supply was available, a smaller beach was prepared
for testing than was previously used (Plate 37). This resulted in
increased time to build the beach to a near~equilibrium planform since
the fillet development was begun from a more shoreward position. The
5-ft wave again provided a large fillet (Plate 38) and the downcoast
wave removed 90 percent of this fillet. The large accretionary region
located along the upcoast beach after running the downcoast wave was a
model effect due to the limits of coverage of the shoreline by the down-
cast wave (i.e., it was in the diffraction zone of the downcoast wave
generator)., This is true for all other tests for which the downcoast
wave generator was used. Plate 39 shows the fillet after it has been
eroded at the end of the test and shows accumulation in the deposition

basin shoreward of the weir.
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Test. 4 (Plan 1)
66, This was the first test with the 0.13-mm glass beads which

had been selected on the basis of the two-dimensional wave flume testing.
The initial beach slope was 1:13 and a 5-ft upcoast wave was run for

50 hr (model). The beachline was measured every 2 hr to determine when
a nearly "equilibrium" planform was obtained. Plates 40-42 show the
resulting planforms after the upcoast and downcoast waves. Gradual
erosion occurred in the region 600 to 1400 ft upcoast of the jetty while
the upcoast wave was run. Just upcoast of the eroding area there was an
accumulation of sediment offshore (see top of Plate 42) accompanied by a
rip current at that location, It was thought that perhaps the feeding
rate was too high causing an accumulation at this location which in turn
aided in generating a rip current and thus short-circuiting the littoral
movement. Table 3 shows that the fillet area of 4,78 ft2 is only about
one-half that of Test 2, run with coal, although the bead test was run
12 times longer, Of the 2,051 ft3 of material fed, only 0,118 ft3 de-
posited in the basin. Therefore the next test was designed to lower the
feeding rate to reduce the possibility of "clogging' the littoral drift.
Test 5 (Plan 1)

67. Test conditions were similar to those for test 4 except that

the feed rate was reduced. After 60 hr (model) of upcoast waves the
fillet size of 4.90 ft2 was only slightly larger than the one of test 4
and deposition into the basin was slightly less--0.095 ft3. Results are
shown in Plates 43-45, As discussed earlier, an interesting phenomenon
was noted during this test which was thought to contribute to under-
standing sediment movement upcoast of the jetty. Waves were observed
being reflected off the outer leg of the upcoast jetty. These reflected
waves became noticeable as they shoaled on the sediment accumulation as
seen in Plate 46 (looking upcoast from the jetty)., Their initial contact
with the shoreline began at this location and stretched upcoast. The
interaction of incident and reflected waves in this area aided in the
offshore transport of sediment.

Test 6 (Plan 1)

68, 1In order to increase littoral transport and direct the wave
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reflected off the outer leg of the welr jetty farther upcoast, the
deepwater wave angle with the coast was increased from 30 to 40 deg.

The upcoast wave was run for 60 hr (model) and a slightly smaller fillet
(3.77 ft2) was formed. Material volume deposited in the basin was
slightly increased over test 5 (Table 3). Plates 47 and 48 show the
results. Also Table 3 shows that 1.121 ft3 was fed upcoast but only
0.107 ft3 deposited in the basin, a somewhat similar proportion as for
the previous tests with glass beads. As seen in Plate 48 there is still
a similar pattern of sediment accumulation offshore and erosion just
upcoast of the fillet, It appeared that reflected waves were still
inhibiting longshore transport and creating offshore movement.

Test 7 (Plan 1)

69, It was postulated that perhaps a larger wave would increase

the littoral transport along the coast by increasing turbulence and
alongshore wave thrust at the 1:100 scale and thereby overcome effects
of waves reflecting off the structure, Plates 49-52 show results for
this test which was run for the upcoast wave only for 16 hr (model).
This test had close to the same wave energy input as test 6 since the
10-ft wave duration was about one~fourth as great. A fillet of 2,60 ft2
was formed, smaller than the previous test by about 30 percent; however,
the deposition basin captured almost double the amount of sediment.
Plate 50 shows that two distinct zones in the deposition basin were
filling. The shoreward portion of the basin was filling in the same
manner as in previous tests, but the oceanward portion was filling due
to suspended sediment coming over the oceanward end of the weir, Plate
51 shows also a significant amount of sediment was moving oceanward
along the outer portion of the upcoast jetty. Plate 52 (looking upcoast)
shows a cusplike beachline created by the interaction of incident and
reflected waves as discussed in a previous section,

Test 8 (Plan 1)

70. In test 7, the molded beach did not extend far enough ocean-
ward to reach the point of initial breaking for the larger wave used in
that test. TIn order to extend the seaward toe of the beach to that

location with the limited supply of bead sediment, the beach slope was
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reduced from 1:13 to 1:27. The initial high-water line was maintained
at the same location as for the previous tests. This test was run for
60 hr and Plates 53-56 show test results. Plate 54 shows the testing
after 16 hr (which can be compared with test 7, which also was run for
16 hr). Comparison of Plates 50 and 54 shows that there was more off-
shore movement along the jetty. At the end of the test, the fillet
against the jetty was smaller than that of the previous test by about
one~third. However, the shoreline trend is similar (compare Plates 49
and 53) as there was still erosion in the region just upcoast of the
fillet. Plate 56 shows the movement of sediment offshore along the
jetty. The path of the sediment is initially along the ocean side of
the weir, then there is a gradual lateral transfer (in the upcoast
direction) of some sediment. This region had a complex circulation due
to the short—crested wave field caused by waves reflected off the outer
leg of the jetty plus a circulation induced by the longshore currents
being deflected first offshore along the weir section, then tending to
be recirculated back upcoast. There also was an oceanward component of
movement of the sediment in a direction parallel to the outer leg of the
jetty caused by the velocities created in the short~crested wave field
superimposed on the deflected longshore currents and also aided by the
of fshore slope of the beach. Plate 56 also shows a region of no off-
shore movement where the model bottom was clear of sediment. Shoreward
of this region was the point of maximum shoreline recession. Upcoast of
this area there was offshore transport of sediment due to a net bottom
current in the wave field (also noted in the two-dimensional flume tests
in Appendix A). It appeared that a very slow return circulation eddy was
cancelling this offshore movement in the area of erosion and changing
the character of the approaching wave so that the breaker was closer

to the shore at this location. Also at this location the longshore cur~
rent tended to deviate from the shoreline and move offshore (Plate 19),
which might aid in keeping the shoreline more recessed than the region
upcoast.

Test 9 (Plan 1)

71, In order to determine the influence of the waves reflected
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off the upcoast jetty on the movement of the bead sediment, wave absorber
was placed along the upcoast jetty to significaatly reduce wave reflec~-
tion, The test was run for 20 hr and erosion just upcoast of the fillet
still occurred but at a slower rate, Plates 57 and 58 show the results,
Table 3 indicates a larger fillet (by a factor of two) for this test
relative to the previous test, though as in earlier tests, erosion of
the fillet area continued. Deposition in the basin was occurring at a
faster rate than in test 8, indicating that significant reduction of the
reflected wave permitted better transport to the weir., At this point in
the testing program it became obvious that due to time and cost limita-
tions, coal would be a more satisfactory tracer material. 1In the pre~
liminary tests (for a small accretionary-type wave), a full fillet was
built upcoast with coal without the erosional tendencies noted in the
glass bead tests. Another key factor in using coal was the reduction in
testing time. Bead tests required a run time on the order of 70 model
hours, while coal tests could be completed in about 8 model hours. The
primary fault with the bead appeared to be its lack of response to the
longshore currents parallel to the coast., Onshore-offshore movement was
correctly simulated in the model for the given test condition when
compared with what would be expected from a similar prototype condition.
The tendency for more offshore movement with the bead than the coal as
seen in the flume tests should not have deterred the formation of a
fillet near the weir. As seen by Shepard (1950) in a study of a pocket
beach in California responding to a change in wave direction, at a time
of high waves the beach would grow oceanward at the downdrift end of the
pocket yet maintain a storm profile. It would seem reasonable to expect
the beads to respond in a similar manner.

72. The threshold velocity (Komar and Miller 1973) of the beads
due to a l-sec wave of 0.1 ft height in 0.1 ft of water was 0.40 fps and
that of the coal was 0.28 fps. For incipient motion of a particle on a
fixed smooth bed due to unidirectional flow (Novak and Nalluri 1974) cal-
culations show the incipient velocity for the bead was 0.37 fps and that
of coal was 0.25 fps. For the smaller waves used in this study the in-

cipient velocity of the bead was close to that of the longshore current
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being generated and the coal was able to move more readily alongshore.
73. An examination of previous mathematical modeling of fillet
evolution indicates good results have been obtained without simulating
onshore-offshore transport, thus indicating that the longshore transport
mechanism dominates the onshore~offshore two-dimensional transport in
the formation of fillets., If this is the case, the higher incipient
velocities required for the bead must be the main factor preventing
formation of a fully accretionary fillet by permitting the shoreline
circulation cells generated by the reflected waves to control the long~
shore movement of the relatively heavier bead; that is, longshore move-
ment is reduced which permits accumulations upcoast in the presence of
circulation cells which deflect wmaterial offshore.
Test 10 (Plan 1)

74, The 0.5-mm coal was molded to a 1:27 slope, as in bead

tests 8 and 9, and the 5.0-ft upcoast wave was run for 7 hr. Every hour
the deposition in the basin was removed and measured volumetrically.
After 4 hr the rate of deposition in the basin reached a constant level.
Deposition during hour 4 was 0.495 ft3 and deposition during hour 5 was
0.484 ft3. Simultaneously with the volumetric measurements, the rate

of shoreline change also was being examined hourly. After 5 hr there
were no significant changes in the fillet planform near the weir.

During hour 6 an increased feed rate was tried but only resulted in
upbeach accumulations that slowed transport into the basin., The fillet
region showed no significant change during the last 2 hr. Therefore it
was decided that a 7-hr test was of sufficient duration to develop an
equilibrium fillet near the weir (in the range of 1000 ft upcoast of the
weir). This test (Plate 59) can be compared with test 6 (Plate 47), a
bead test similar in wave parameters but different in beach slope and
duration. When shorelines after the upcoast waves are compared, it can
be seen that there was no erosion region along the upcoast shoreline as
there was for bead test 6 due to the increased rate of longshore move-
ment of coal over that of the beads. Also it is of interest to compare
this test with test 3 (Plate 37) in which plastic beads were used. The

accumulation near the jetty for upcoast waves was similar, and farther
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upcoast, the plastic beach receded more due to the initial shoreline
being located farther landward.

75. Because of the fairly rapid movement of the coal, a 1-hr
(model) downcoast wave duration was selected. It was anticipated that
the time interval would provide some indication of fillet shape variation
among the various jetty plans for a downcoast wave. Plates 60 and 61
show photographs after the upcoast and downcoast waves, respectively.
Table 3 shows that the fillet contained 12.00 ft2 of surface area after
the upcoast wave and 5.77 ft2 after the downcoast wave, a reduction of
52 percent during the l-hr (model) downcoast wave exposure.

76. As shown in Plates 59 and 60, the fillet never reached the
weir but stabilized at a point about 80 ft (0.8 ft model) landward of
the weir section, This location was reached after 1 hr into the test
and remained constant for the remainder of the upcoast wave. Plate 60
indicates the manner in which the basin filled. The sediment moved over
the weir and to the shoreward corner of the basin, settling adjacent to
the jetty. As this region filled enough to emerge above the water
level, it was pushed shoreward along the inside face of the jetty by
refracting waves,

Test 11 (Plan 2)
77. The Plan 2 jetty system (with the upcoast jetty making an

angle of 60 deg with the shoreline) was tested in the same manner as the
Plan 1 system of test 10, Results are shown in Plates 62-64, The
upcoast fillet had a surface area of 9.61 ft2 after the upcoast wave and
was totally removed back upcoast by 1 hr of the downcoast wave. Also, a
lesser amount of material was deposited in the basin (Table 3) than in
test 10, This was probably due to increased movement of material off-
shore (see Plate 63) as a result of incident wave-reflected wave inter-
action at the shoreline., Sediment transport over the weir occurred at
the shoreward edge as in test 10,

Test 12 (Plan 3)

78. The Plan 3 jetty system, with the inner weir section of the

jetty making an angle of 30 deg with the shoreline, was tested for the

same counditions as tests 10 and 11 (i.e., Plans 1 and 2). Plates 65-67
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show the results after upcoast and downcoast waves. The fillet stabi-
lized shoreward of the edge of the weir as in the previous tests and
sediment transport was confined to the shoreward portion of the weir.
Once again there was offshore movement of some sediment upcoast of the
weir due to the interaction of incident and reflected waves (Plates 66
and 67). Table 3 indicates that 2.520 ft3 of material was deposited
in the basin-—-less than that of test 10 (Plan 1) but more than that

of test 11 (Plan 2). The upcoast fillet size was 6.25 ftz, less than
Plan 1 or Plan 2 fillets by a considerable amount. Therefore, it ap-
pears that offshore movement upcoast of the weir is greater for Plan 3
than for Plan 1 and Plan 2. The downcoast wave completely removed the

accumulated fillet (Plate 67).
Test 13 (Plan 3)

79. This test was designed to investigate the effect of a 5.0-ft
tide on the sediment movement. Therefore, when compared with previous
testing, this test had a variable water surface and tidal currents. The
test was run for six tidal cycles for the upcoast wave (equalling about
7.5 model hours) and one tidal cycle for downcoast waves (equalling
about 1.25 model hours). Therefore, the test duration was nearly the
same as for the no-tide testing. The fillet size accumulated during the
upcoast wave was narrower but longer (compare Plates 65 and 68) and
contained 15,35 ftz. This is significantly larger than the no-tide
fillet of test 12, and was due to its longer extent upcoast which may,
in turn, be due to having an average lower water level during the test.
Deposition in the basin was reduced by 19 percent. Also, comparison of
Plates 66 and 69 shows that there is a slight increase in deposition
seaward of the fillet upcoast of the weir. This probably is due to the
times when the water level was below the weir crest and longshore cur-
rents were deflected along the offshore jetty. In addition, the lower
water levels permit greater wave reflection off the weir which inter-
acted with the incident wave, producing increased offshore transport.
The downcoast wave did not cut back the shoreline near the jetty as far
(the fillet was reduced in size by 53 percent) as the no-tide test

(compare Plates 67 and 70), probably due to the varying water level and
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possibly due to the effects of the ebb jet (exiting the channel) on the
downcoast wave. This jet would refract the wave crest, thus reducing
its angle with the shoreline.

Test 14 (Plan 3)

80, To examine effects of a storm wave on the movement of sediment

near the jetty, the Plan 3 configuration was subjected to an iuncreased
upcoast wave height of 10.0 ft for the same duration (7.0 hr) as used in
previous tests. Other test conditions remained the same as in tests 10,
11, and 12. It had been noted in the hydraulic testing that strong
currents along the upcoast side of the jetty existed for high wave
conditions, Plates 71 and 72 indicate that there was only a small
fillet (1.15 ftz) built against the jetty and a slight erosion of the
original shoreline upcoast of the accumulation. Farther upcoast of the
region of erosion there was a buildup of the beachline which indicated
the region adjacent to the jetty was not being underfed, but that sedi-
ment was leaving the beachline before it could accumulate against the
jetty by moving along the weir and oceanward along the upcoast side of
the jetty. Plate 73 shows the accumulations oceanward of the weir.
Plate 73 also shows that the major accumulation of sediment transported
over the weir occurs in the oceanward portion of the deposition basin.
The lobe of sediment extending oceanward directly offshore of the weir
section, as seen in Plate 73, was observed to be created primarily by
wave energy reflected off the weir section. Material that moved into
the region of the bend of the jetty was carried there by the littoral
current along the jetty. The total amount of material in this region
was 1.708 ft3 and the total amount deposited in the basin was 7.736 ft3.
Therefore, 18 percent of the total amount of sediment moving to the weir
region bypassed the weir section for this no-tide test. The downcoast
wave removed the small fillet plus an additional quantity of shoreline
as seen in Plate 74.

Test 15 (Plan 3)

81. The previous test was repeated with tidal conditions similar

to test 13 and Plates 75-79 show the results. The fillet for this test

(Plate 75) was somewhat similar in shape and twice as large (2.08 ftz)
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as that for the no-tide condition (test 14), but it was small in magni-
tude with respect to the smaller wave conditions for Plan 3. The total
amount received by the deposition basin (3.707 ft3) was just over
one-half that captured by the basin for the no-tide test 14 (see

Table 3)., There also was an increase of sediment bypassing the weir.

Of the total amount reaching the weir, 26 percent bypassed the weir as
compared with 18 percent for the no-tide condition. Also it was noted
during the testing that with the addition of tidal currents, the
distribution of sediment entering the deposition basin was along the
entire length of weir. With the no-tide condition and the 10.0-ft wave,
sediment passed over the oceanward portion of the weir. The downcoast
wave removed the small fillet (Plate 77). Test 15 was extended by
running a 10-ft wave for 7 hr with no tide. No feeding of the beach was
performed due to the buildup of the upcoast beach during testing with
the tide (see Plate 75 and compare shoreline with Plate 71 for a no-tide
condition), Plate 78 shows the model after the 7 additional hours. No
dredging of the basin was performed as it filled., Interesting to note
was the formation of a bar separating the basin and the navigation chan-
nel. The total volume in the basin was 7.703 ft3. The total amount of
sediment oceanward of the weir and along the upcoast jetty was 5.454 ft3o
Therefore, for this high~energy condition and high feed rate (due to
upcoast beach storage), 41 percent of the sediment moving into the weir
region moved offshore and 59 percent moved into the basin. Also, move~
ment of sediment into the channel can be seen in the top of Plate 78.
Plate 79 shows the coal sediment with water drained from the model.
Undulations in the sediment bed due to the reflected wave field can be
seen, The test was continued for 7 more hours (test conditions similar
to previous 7 hr) with the upcoast beach the sole provider of sediment.
Since the beach had been eroded significantly, transport was reduced and
the basin captured 4.211 ft3 with 0.960 ft3 moving offshore in front of
the weir. Thus 19 percent of the total material moving toward the weir
moved offshore.

Test 16 (Plan 3A)

82. A groin was placed upcoast of the weir as shown in Figure 14,
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The groin, with crest uniformly set to +7.0 ft msl, extended out to

the same depth as the shoreward end of the weir. The purpose of this
test was to examine sediment movement around an auxiliary structure in-
tended to aid in maximizing fillet storage. One question to be answered
would be whether sediment from upcoast might be deflected offshore away
from the weir; thus conditions of impermeability and high crest elevation
were selected to maximize this possibility. Plates 80-83 show test
results. Plate 81 is after 7 hr, the usual test interval, and Plate 82
is after 8 hr of the test. The l-hr extension of the test was necessary
due to the longer duration required to stabilize a uniform rate of
transport into the basin since the region between the groin and weir was
initially empty of sediment. The test was stopped before an equilibrium
rate was reached. The longshore sediment movement was not significantly
deflected offshore by the groin but bypassed the groin once a fillet had
built up. The beachline in the compartment between the groin and the
weir then gradually accreted up to the shoreward end of the weir. The
downcoast wave then shifted the fillet in the compartment against the
groin (Plate 83). The initial accumulated fillet storage upcoast of the
groin was 18,25 ftz. Because of its location significantly farther
upbeach than previous fillets, part of the fillet was outside the in-
fluence of the shoreline covered by the downcoast wave. Therefore the
erosion of the total fillet was extrapolated from that part where the
fillet was eroded by the downcoast wave, and it thus was determined that
79 percent of the fillet was eroded during the l-hr duration of downcoast
wave (see Table 3). The effect of the increase in beach storage for
this configuration and also the initially empty compartment between the
groin and the weir is reflected in the total basin accumulation of

1.139 £to,

Test 17 (Plan 3B)

83. This plan involved placing a groin adjacent to the upcoast

side of the weir. The groin of the previous test could not be shifted
laterally downcoast since this would place the groin tip in relatively
deep water and probably would not be considered a feasible plan. There-

fore the weir was shifted along the line of its 30-deg trunk until it
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intersected the shoreline. The groin then was constructed perpendicular
to shore from this point until it extended to the contour at which the
weir section was initiated in previous testing. This is possibly a
better location for a weir since it is shifted farther away from the
navigation channel which would aid in reducing any tendency for ebb
flows to migrate into the deposition basin and exit over the weir.

Plate 84 shows the beach planforms after the 5-ft 10-sec upcoast and
downcoast waves. Plate 85 shows the beach at the start of the test,
Plate 86 after 8 hr of upcoast waves, and Plate 87 after 1! hr of down-
coast waves. The surface area of the fillet was 28,20 ft2 after the
upcoast wave and was reduced 90 percent by the downcoast wave (with an
extrapolation of the eroded area due to limited beach coverage by the
downcoast wave as discussed for the previous test). It was noted that
sediment did not bypass the weir section but started accreting at the
shoreward edge of the weir (Plate 86) and accumulated in the shoreward
portion of the basin (in the corner adjacent to the jetty). Dredging of
the basin was stopped at hour 4 of the test in order to let the basin
fill and to note any tendency for sediment accumulation to cut off in
front of the weir. The accumulation in the basin seen in Plate 86 is

3 of the

the major portion of the transport into the basin since 2.051 ft
total transport (2.264 ft3) occurred between hours 4 and 8 of the test.
Observations during the test indicated that waves reflected off the weir
seemed to aid in keeping transport over the weir toward that portion of
weir adjacent to the groin. A strong current movement into the basin
was noted (even though no tide was reproduced) which would further
augment sediment transport over the weir.

84, Test 17 was extended to determine shoreline response for a
10-ft, 10~sec wave. First, the fillet was reformed by running the 5-ft,
10-sec upcoast wave for 4 hr (see Plate 88 and compare with Plate 86)
and the basin was allowed to fill, At this point, the 10-ft, 10-sec
wave was run for 7 hr and Plates 89 and 90 show the results. The region
at the weir crest gradually filled from the shoreward end of the weir to
the oceanward portion as the test progressed and the basin filled.

There was no tendency to form a bar from the groin tip which might have
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cut off the weir. The basin contained 5.642 ft3 at this time and

3.077 ft3 bypassed the weir, accumulating along the upcoast side of the
outer jetty trunk. Plate 91 shows the model bed after the ocean was
drained. The 10-ft wave once again moved significant amounts of sediment
offshore with 35 percent moving offshore and 65 percent moving into the
basin. These figures show less offshore movement than the basic Plan 3
configuration, perhaps indicative of reducing offshore transport near

the jetty by reduction in wave reflection effects on the upcoast region.

Test 18 (Plan 3C)

85. Plan 3C called for an examination of a 45-~deg weir (see Fig-
ure 14), The outer trunk of the upcoast jetty remained the same as in
previous Plan 3 testing. Plate 92 shows the resulting beach planform
for the 5-ft, l0-sec upcoast and downcoast wave conditions. Wave reflec-
tions off both the outer and inner portions of the upcoast jetty appeared
to minimize the fillet size seen in Plate 93, The basin was permitted
to accumulate tracer throughout the test. The fillet size was 7.60 ft2
(Table 3) and was eroded 91 percent by the downcoast wave (Plate 94).
There was significant offshore movement during the upcoast wave, but no
material moved past the weir for this 5~ft wave.

86. The fillet was rebuilt by running 2 additional hours of 5-ft
upcoast waves. Subsequently the wave height was increased to 10 ft and
run for 2 hr; Plates 95 and 96 show the results., The fillet was reduced
and an erosional area occurred along the upcoast shoreline where the
waves reflected off the weir provided increased energy. Plate 96 shows
considerable movement of sediment along the jetty. During the 2~hr test
period 2.696 ft3 entered the basin and 2,373 cu ft bypassed the weir.
Therefore, the basin captured 53 percent of the littoral drift with
47 percent bypassing.

Test 19 (Plan 3D)

87. Plan 3D was a modification of Plan 3C and consisted of

placing a groin downcoast of the weir to determine its effect on material
bypassing the weir (noted to be quite severe for the 10-ft wave test of
Plan 3C). 1Initial test conditions consisted of having a fillet formed

upcoast of the weir by a 5-ft wave. The 10-ft, 10-sec upcoast wave then
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was run for 3 hr. Plate 97 shows the planform and Plates 98 and 99 show
the model. Theve was still movement past the groin toward the jetty

tip. During the test 2,323 ft3 deposited in the basing 0,432 ft3 de-
posited in front of the weir and 0.678 ft3 bypassed the groin and settled
along the ocean side of the jetty trunk, Thus, 71 percent of the

sedimeunt reached the deposition basin, an 18 percent increase from the

previous test,

Comments on Test Conditions and Effects on Test Results

88. The relatively deeper water along the jetties in the model
may have reduced wave effects which generate longshore currents along
the jetties. In many smaller inlets, depths at the oceanward end of the
jetties might be about 10 ft compared with the scaled depth of ~24 ft at
the end of the jetties in the model. Therefore, one might expect
stronger current action for more typical inlet bathymetries which might
transport more sediment to the channel than was observed in this study.

89. The curvature of countours generally paralleling the outer
ends of jetties rather than the model contours which paralleled the
shoreline might also augment wave effects relative to that observed in
the model by the concentration of wave orthogonals in the vicinity of
the jetties.

90. A design concept used in this study of starting the weir
section at a depth of 10 £t so as to create a large storage fillet will
probably not be feasible in many projects due to the shallow depths and
bars in the region of a natural inlet. The Plan 3B system probably
would represent a functional weir jetty system if depths are shallow.

91l. TFor the type of jetties investigated herein (i.e., jetties
with the weir offset oceanward in order to provide an impermeable por-
tion between the shore and the weir which in turn permits a storage
fillet to be created upcoast of the weir) it has been seen that there is
a strong probability that not all downdrift transport will move over the
weir, but some will move offshore in the upcoast vicinity of the jetty.

As wave conditions are increased, more of this sediment can be carried
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offshore, The combination of the deflected longshore current and the
interaction between incident and reflected waves contributes to offshore
sediment transport. Most likely, the more irregular the wave field the
less offshore transport will occur since the offshore circulation cells
would be more diffuse and not as concentrated as those in a monochromatic
wave field. However, extreme wave conditions probably would carry sub-
stantial quantities of sediment offshore due to the extreme turbulence
near the jetty caused by incident waves, reflected waves, and longshore
currents,

92. As shown in a number of test photos there was an offshore-
onshore component of sediment movement. In the two-dimensional tests
(see Appendix A), onshore-offshore movement was relatively straight~-
forward in that criteria such as that of Dean (1973) can be applied to
determine whether movement is of Eshore or onshore. In the three-
dimensional model, other factors influenced onshore-offshore motion. In
the region of the jetty, littoral currents were being deflected offshore
which could carry material offshore, and there was incident wave-
reflected wave interaction which influenced onshore-offshore movement.
Also, further upcoast outside the influence of the jetty-created effects
of onshore-offshore movement, there appeared to be onshore~offshore
effects caused by the condition of the beachline. For example, it was
noted during testing with coal in test 15, that during the first portion
of the test, when feeding the beach at regular intervals, there was some
movement in an offshore direction from the beach. In a later phase of
the testing, when feeding was stopped and the beach was gradually re-
ceding, the offshore deposits moved onshore and downcoast. All tests
were for a large upcoast wave angle (40 deg).

93. Reflected energy would be less for rubble weirs but still
could be significant based on prototype reflection coefficients of
Thornton and Calhoun (1972). It was noted in this study that if the
outer leg of the jetty was inclined to the shore at some angle (60 deg
for Plans 1 and 2), there was significant reflected energy impinging
on the shoreline. The model reflection coefficient of 0.3 is comparable

to that of prototype structures. For structures with outer legs
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perpendicular to shore (Plan 3), the reflection would not extend very
far upcoast for the predominant angles of wave approach or would not
exist at all due to the Mach-stem effect. It is also noted that the
weir probably was not acting as a full reflecting surface for most of
the testing, since the water level was higher than the weir and some

wave energy was transmitted into the basin.

Discussion of Beach Response Tests

94, The first important point noted throughout the testing was
the offshore movement of material near the weir jetty system. It
appears that one cannot expect all the sediment moving downcoast to
deposit in either the basin or the fillet, but some part will move
offshore (most likely a greater percentage for larger wave conditions).
This type of offshore movement differs from that along a uniform coast-
line in which a beach profile is adjusting to various wave conditions.
The offshore movement discussed here is related to the presence of a
jetty, and the offshore wmovement occurs due to an oceanward deflection of
the wave-generated longshore current by the jetty system even with the
presence of a weir (which might be conceptually expected to entirely
capture this current). Also, the interaction of the longshore current
with the short-crested wave field, created by incident waves and waves
reflected off the upcoast jetty, is important in creating circulation
cells which can remove sediment from the beach as seen in preceding
discussions.

95, Distinguishing differences can be seen among the plans due to
reflected wave phenomena because of the various jetty orientations. The
extent that these differences among structural configurations can be
extrapolated from model to prototype conditions is a difficult question.
The model provides a relatively uuniform environment of monochromatic
waves and smooth slopes in contrast to the broader spectrum of waves and
varying bathymetry of the prototype. However prototype conditions
similar to the model can occur part of the time as evidenced by the

reflected wave pattern seen in Figure 22 of Masonboro Inlet.
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96. Whether the model tracer material correctly simulates the
movement of sand is another problem of concern. It appears evident that
the coal tracer responds to all the existing forces--longshore currents,
short~crested wave circulation currents, reflected wave energy, and
tidal currents. Since these forces dominate in the region of the jetty
system, the coal is most likely responding as a tracer in an excellent
manner; i.e., the coal is moving in directions in which prototype matetri-
als would move. Also, it appears that the coal, which has a tendeucy to
provide an accretionary beach in two~dimensional testing, would probably
respond well to an accretionary beach situation such as the creation of
a fillet upcoast of the jetty. Perhaps then, the accretionary planforms
could be considered representative of a prototype situation. Situations
where erosion dominates aloung the shoreline are more difficult to evalu-
ate, especially due to the nature of testing in which the beach is
placed on a councrete bed. Erosion can occur to just the limit of the
coal beach depth. Perhaps in nature erosion would continue to greater
depths which in turn would affect erosion of the beach planform. Also,
offshore bars would form in nature which would protect the beach some-
what from further erosion, but these bars do not always form on the
underlying concrete model bed. It appears that the best approach to
take with the beach planform data is to make relative comparisons among
the plans.

97. 1t has been suggested that the optimal weir jetty system
should not capture the entire amount of longshore drift approaching the
weir but that it should only capture the net drift. This would permit
the wave energy from the downcoast direction to remove some sediment
which had been stored in the upcoast fillet by the upcoast wave energy.
Thus, in evaluating the beach planform tests, one criterion for compari-
son would be relative amounts of upcoast storage of the stabilized
,fillet and the amount of removal of the fillet by the downcoast wave.

It should be recognized that test conditions were limited, with only one
upcoast and one downcoast wave condition.

98. Table 3 shows the necessary data to make a comparison in

fillet size (in terms of surface area) accumulated during upcoast wave
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conditions and the amount eroded during downcoast waves. Tests 10, 11,
12, and 18 should be compared as far as the basic weir orientations are
concerned. The Plan 1 jetty with a 90-deg weir has the largest fillet
(test 10), followed by the 60-deg weir (test 11), the 45-deg weir

(test 18), and the 30-deg weir (test 12). Fillet size is thus reduced as

weir angle decreases. Figure 39 shows a plot of these fillets and it

UPCOAST ~——s-

ORIGINAL SHORELINE
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AaAaaA PLAN 3A (45° WEIR - TEST 18) =

Figure 39, Fillet development for 5-ft, lO-sec 40~deg upcoast wave

can be seen that they are fairly similar, with small undulations occur-
ring at different locations for each separate condition. These plots
were made using the shoreward end of the weir as a reference point. As
the weir angle decreases, more surface area of the fillet is removed
relative to the larger angles, accounting for most of the reduction in
fillet surface area as weir angle decreases. Examining the fillets
upcoast of the region where weir angle affects storage, it appears that
the 45-deg weir has the smallest surface area in the midsection of the
fillets, probably due to the focussing of reflected wave energy just up-
coast of this region which aided in removal of sediment from the shore-
line. Also from Figure 39, it is seen that the fillet approached
closest to the weir for the 90-deg orientation, followed by the 60-,
30-, and 45-deg orientations, respectively. Reflected wave energy into

this region appeared to control the location of the meeting of the
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fillet's shoreline and the jetty, since small circulation cells were
usually set up adjacent to the jetty.

99, The downcoast wave removed varying amounts of sediment from
the four basic configurations (tests 10, 11, 12, and 18) as seen in
Table 3. Plans 1, 2, 3, and 3C removed 52, 100, 100, and 91 percent of
the fillet, respectively. These percentages correspond to losses of
6.18, 9.61, 6.25, and 6.95 ft2 from each respective fillet, The orienta-
tion with an outer leg perpendicular to shore certainly showed an ad-
vantage over the Plan 1 dogleg orientation with respect to removing
sediment from the fillet toward the upcoast beach.

100, During testing, measurements of the volume of sediment
entering the basin were usually made on an hourly basis for the tests
with coal and every 4 hr when using glass beads. Figures 40 and 41 show
the accumulative deposition in the basin versus time for tests 4-19.
Discussing only the "basic'" tests (10, 11, 12, and 18) at this time,
Figure 40 shows that test 10 (90-deg weir), test 18 (45-deg weir),
test 12 (30-deg weir) and test 11 (60~deg weir) had decreasing total
deposition of 2.907 £t3, 2.523 £t2, 2.520 £t>, and 2.283 ft°, respec-
tively. It should be noted that the feeding of sediment was increased
over that of other tests for test 10 during the last 2 hr, which caused
an increase in basin deposition during hour 6 of the test but then
resulted in a decrease during hour 7. If the curve of test 10 were
extrapolated from hour 5 to hour 7, about the same cumulative total 1is
reached, so the accelerated feeding did not affect the total accumula-
tion at hour 7. If the test had run longer there may have been signifi-
cant changes. Tests 11, 12, and 18, plus the first 5 hr of test 10, all
had a uniform feed rate of 0.494 ft3/hr and all tests should prove to be
directly comparable., Assuming that an area change of 1 ft2 of fillet
represents a volume change of 1 yd3 (27 ft3) of sediment (rule of thumb,
Shore Protection Manual (CERC 1977) though not directly applicable to
model values but used for the sake of providing relative comparisons),
and adding the fillet volume and basin volume, the following volumes are

determined, ranked by magnitude: Plan 1, 6,147 ft3; Plan 2, 4.860 ft3;

Plan 3C, 4.575 ft3; and Plan 3, 4.208 ft3. The reason for the difference
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Figure 40,
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among these totals is the increased offshore movement as the fillet-
basin total decreases and as the angle of the weir decreases. This is
evident from the photographs of Figures 34 and 36-38 shown previously.

101. Figure 42, taken from preliminary testing of glass beads,
with a 10-ft, 10-sec 30-deg upcoast wave, generally typifies sediment
movement patterns for the Plan 1 beach response tests. When a large wave
was run (10 ft), there were usually two zones of movement over the weir.
Seaward, at the location of the initial breaker, there was transport of
suspended sediment over the weir straight across into the deposition
basin. Shoreward, there was movement of sediment over the landward edge
of the weir. This sediment was pushed into the lee of the inner rubble~
mound portion of the jetty toward the shore by refracting waves coming
over the weir and by wave energy which had entered between the seaward
tips of the jetties and diffracted into the deposition basin. For the
smaller waves (5 ft), which broke near the shoreline, only the second
portion of the above description holds true. It was difficult to make
direct comparisons of the accumulative patterns of deposition in the
basin since in many tests, dredging of the deposition basin was per-
formed. Plates 34 and 39 show the full test's deposition of the Plan 1
system for coal and plastic sediments, respectively. In each case the
sediment was moved to the shoreward end of the deposition basin.

102, Plate 63 shows movement over the weir for Plan 2. The sedi-
ment moved over the weir and behind the shoreward portion of the jetty.
The photograph shows the deposition for only the last 1 hr of the test
since dredging of the basin was performed during the test. The basin
was not cut into the model bed for Plan 2, so the deposition is spread
over a broader area than if the basin had been installed. Plate 66
shows the last hour's deposition for Plan 3, with sediment accumulating
in the lee of the shoreward portion of the jetty. Plate 81 shows the
last hour's deposition for Plan 3A, and Plate 86 shows deposition for
Plan 3B for the last 4 hr of testing. Plate 93 shows the entire test's
basin deposition for Plan 3C, The shoreline has built across the basin
to the other side. For the tests discussed in this paragraph only the

5-ft, 10-sec wave was reproduced.

87



UOT]09S JToM IDA0 JUSWOAOW JUSWIPSS [BOITAA] °*zH 2an3I4g




103, Sediment movement over the weir for the 10-ft, 10-sec wave
with Plan 3 (Plate 73) indicated movement of sediment over the entire
width of the weir due to the accumulation of sediment along the entire
seaward side of the weir; accumulation is in the outer one-third of the
basin. Plan 3C's response (Plate 96) is similar to that of Plan 3. The
response of Plans 3B and 3D, which have groins adjacent to the weir, was
to promote basin filling straight across the basin, parallel to the
shoreline for the 10~ft wave condition and is shown in Figure 43, The
shoreward spit development in Figure 43a was due to the earlier portions
of the test when the 5-ft upcoast wave and 10-ft downcoast waves were
run.

104, From the above discussion it was seen that for initial con-
ditions, that is, for a newly dredged basin, and for wave conditions
where the breaker is close to shore, sediment moved over the shoreward
edge of the weir and deposited in the lee of the shoreward portion of
the jetty, and a spit developed across the shoreward portion of the
basin. However, for larger waves, suspended sediment would be trans-
ported over the more seaward portion of the weir, and for some tests
where sediment had accumulated to shallow depths in front of the weir
(Plates 78 and 96) sediment movement over the entire weir length took
place. Other tests, like that shown in Figure 43b, show that certain
conditions might produce spit development across the basin which could
short—-circuit the use of a portion of the deposition basin for larger
wave conditions.

Other tests with coal

105, The Plan 3 system also was subjected to testing with tides
and with larger waves. It was desired to see whether any significant
differences were noted when the regularly scaled tide was run with sedi-
ment beach and feed conditions similar to the no-tide testing. As dis-
cussed previously, test 13 provided a fillet similar to the no-tide test
(test 12), but of much longer extent alongshore due to the varying water
level. Total volume deposited in the basin for test 13 was reduced from
the test 12 value by 0.469 ft3 (or 19 percent); however Figure 40 shows

that the slopes of the two test curves are similar, indicating that each
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test had reached a similar rate of deposition. Therefore, for the 5-ft,
10-sec wave condition, results between the tide and no-tide testing were
not significantly different.

106. Test 14 (no-tide) and tesu 15 (tidal) were conducted in a
similar manner to tests 12 and 13 except a 10-ft, 10-sec wave was repro-
duced. Although the fillets were not significantly different, more
deposition in the basin and more movement offshore past the weir was
measured for the no tide test due to the constant high water level.
However, the percentage of sediment moving past the weir was higher for
the tide test--24 percent compared with 18 percent for the no-tide
condition of test 14.

107, Tests 16, 17, and 19 were designed to examine the possibil-
ities of preventing some of the problems such as small fillet development
or sediment bypassing the weir section. Neither of the groins upcoast of
the weir (tests 16 and 17) appeared to adversely affect transport to the
weir and did provide increased fillet storage. Also, when a 10-ft,
10-sec wave was added as a continuation to test 17, no tendency for sedi-
ment to cut off the weir was noted. The groin downcoast of the weir
aided in reducing the amount of material bypassing the weir and moving
toward the jetty tip.

Time scale

108. It might be of interest to determine an estimate or range of
the model prototype time scale for sediment transport. The 5-ft, 10-sec
test data were used and a 0.494 ft3/hr feed rate was experimentally
found to be the maximum capacity for this wave. This also was about the
average rate that was depositing in the basin once a near-equilibrium

fillet was obtained. Using the Shore Protection Manual (CERC 1977)

equation
3
Q= (7.5 x 107) ]?9v
s
where
Q = longshore transport rate (yd3/yr)
Pz = longshore energy flux factor (ft-1b/sec/liinear ft of beach)
s
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with P determined from the expression (CERC 1977)

L
S
B 5/2 .
P2 = 32.1 Hb sin Zab
s
where
Hb = breaker height in ft (use 5 ft)
a = breaker angle (use 10 deg)
From the above P = 613 ft-1lb/sec/ft and Q = 4,597,500 yd3/yr =

g,
: 8
0,146 yd3/sec. As mentioned earlier, 0.494 ft3 was depositing in the

basin hourly. This represents about 18,300 yd3 in prototype units.
Dividing 18,300 yd3 by 0.146 yd3/sec equals 125,342 sec = 34.8 hr.
Therefore, 1 hour in the model represents 34.8 hr prototype. However,
this prototype estimate of sand transport used is usually considered
near a maximum especially at higher energy levels (as the calculated
PKS is). Some prototype measurements show transport rates can be two
orders of magnitude less than those calculated. For the sake of this
illustration, a range from that rate calculated to one order of magnitude
less will be assumed. Therefore, one hour in the model can represent
34.8 to 348 hours in the prototype or one model hour can represent 1.45
to 14.5 days.

109. The manner in which the model sediment is moving can be

examined by use of Inman and Bagnold's (1963) equation:

I =(ps—p)ga's

% %
where
12 = immersed weight transport rate (lb/sec)
, , . 2,4
Py = sediment density (Ilb-sec”/ft )
. , 2, 4
p = water density (lb-sec” /ft )
. , , 2
g = acceleration due to gravity (ft/sec”)
a' = correction factor for pore space (equal to 0.62 for coal)
S = volume transport rate (ft3/sec)

and Komar and Inman's (1970) equation:
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where

K = a dimensionless constant
I2 = as defined above
Pl = as defined above

Calculating Pl for the 5-ft, 10-sec and 10-ft, 10-sec, 40-deg deepwater
angle wave conditions scaled down to model dimensions and determining Il
from Inman and Bagnold's equation, values of K were determined for
Komar and Inman’s equation. For the 5~ft wave, K = 0.31 and for the
10-ft wave K = 0.18. Model values of K in past studies have been in
this range, while the value of K for field data has been ~0.77. Con-
sidering K an efficiency factor, it is seen that the model is not as
efficient as the prototype in moving sediment, possibly due to reduced
turbulence in the model. This is illustrated by the observation that the
model transport is almost all bed load for the 5-ft, 10-sec wave condi-
tion, with little or no suspended sediment. Also, the lack of sediment
for transport became a problem for the larger 10-ft wave. The sediment
wedge extended out to near the depth of breaking for the 10-ft wave,

but the thin veneer near the tip of the beach wedge quickly eroded so
that the absence of sediment at the seaward edge of the breaker zomne
reduced transport for a given wave energy. This is reflected in the
calculation of a K = 0.18 for the 10-ft wave.

110. A final comment on time scale would be to conclude that a
time scale is not ecritical to evaluation of results of this study since
the movable-bed portion was examining an "equilibrium" shoreline upcoast
of the weir. However, it might be of interest to determine the time to
obtain "equilibrium" fillets. It probably would be very difficult to
extrapolate such information from the present study, especially since
the model was not fully a movable-bed type. Consequently, it may not be
possible to obtain meaningful results on the time required to develop

equilibrium fiilets from this information.
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PART VI: OBSERVATIONS AND CONCLUSIONS

111, The present study has permitted a number of observations

which hopefully will contribute to weir jetty design. Major objectives

of the study were to determine optimum jetty and weir orientation, weir

elevation, and weir length with respect to impounding the net longshore

transport while providing safe navigation in the channel and dredging

operations in the deposition basin.

Hydraulic Testing

Flow over the weir

112, Results of the hydraulic studies indicate the following:

e

|o

High Keulegan K (Plan 1) and low Keulegan K (Plan 1A)
inlets were tested. High K inlets have maximum ebb
and flood currents near midtide elevation and low K
inlets have maximum ebb and flood currents near low- and
high-water elevations, respectively. As a result (con-
sidering a weir at mtl), high K inlets have less flood
flow and greater ebb flow over a weir than low K in-
lets., For low K inlets there is very little, if any,
ebb flow over an mtl weir. For high K inlets, flood
flow predominates over ebb flow for an mtl weir., There-
fore mtl can be considered a reasonable elevation for a
weir section since it appears desirable to minimize ebb
flow over the weir due to the possibility of aiding
migration of the navigation channel toward the weir and
thus through the deposition basin. Although low-water
weirs were not tested in this study, another model study
(Seabergh and Sager 1980) in which dual low water weirs
were examined revealed that for an inlet with a moderate
tide range (V4.0 ft) and K = 0.9 , continued ebb flow
was maintained over the low-water weir which tended to
disperse the ebb flow over the entire region between the
jetties. This aided currents in flowing along the inner
walls of the weir and jetty rather than concentrating
the ebb flow in the navigation channel, While a low=-
water weir has been used successfully at Perdido Pass,
Fla., without scouring along the weir or jetty trunk,
the tide range is small and wave activity low.

The reduction in weir length from 600 to 300 ft did not
change the unit flow over the weir,
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c. For tests without waves, flood tidal flow was uniformly
distributed over the length of the weir.

d. As flow area between the oceanward end of the jetties is
reduced relative to the minimum cross-sectional area at
the inlet gorge, ebb and flood velocities over the weir
are increased, flood durations are increased, and ebb
durations decreased.

e. In general, a lower Keulegan K inlet will have greater
flood gq (unit discharge) over the weir and smaller ebb
q than a higher X inlet.

f. The ratio of flood flow volume over the weir to the
tidal prism varied from 0.5 to 4.7 percent, with the
maximum ratio for a low K dinlet.

Surface current
flow pattern photographs

113. Conclusions and observations derived from the surface current

photographs indicated the following:

a. [Tide only--all plans.

(1) Plan ! showed a slight tendency for early ebb and
flood flows to deflect to the inside region of the
upcoast jetty.

(2) Plan 1A ebb and flood flows were well aligned with
the navigation channel. The phase shift in the time
of maximum currents from the Plan 1 coudition ac-
counted for the improvement relative to Plan 1 inlet
which had the same jetty alignment as Plan 1A,

(3) Plan 2 showed slightly improved alignment of flood
and ebb currents in the channel relative to Plan 1.

(4) Plan 3 showed better alignment of flood currents in
the entrance channel than Plan 1 or 2, but during
. the early ebb flow there was a diversion of currents
over the seaward end of the weir for Plan 3, since
the weir was closer to the channel than for Plan 1
or 2.

(5) Tidal currents are better guided by having the outer
leg of the weir jetty parallel to the downcoast
jetty; however, the oceanward end of the weir should
be placed as far from the chanuel as possible to
reduce the tendency for ebb currents to move across
the deposition basin.

b. Tide plus waves from upcoast~-Plan 1.

(1) Plan 1 flood tide flow at the jetty entrance was
pushed to the downcoast side of the channel by large
upcoast waves.
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(2) Strong oceanward currents were generated along the
upcoast side of the weir jetty and along the face of
the weir even though considerable overtopping of the
weir occurred during early flood flows.

(3) Currents along the outer leg of the weir jetty
decrease during late flood flow when flow over the
weir is strongest,

(4) Ebb flow in the navigation channel concentrated on
the side adjacent to the weir jetty as it moved
oceanward (Photo 24).

(5) Strong currents moved oceanward along the upcoast
side of the weir jetty during ebb tidal conditions.

(6) Strong eddylike circulations existed in the deposi-
tion basin during most of the tidal cycle, thus
being conducive to sedimentation in the basin,

Tide plus waves from downcoast--Plan 1.

(1) Upcoast moving longshore currents began about 700 to
900 ft upcoast of the shoreward end of the weir for
the 10-ft, 10-sec waves.

(2) Strong eddy circulations existed in the deposition
basin.

(3) Flow over the weilr was very slight,

(4) Flood flow in the entrance channel was confined to
the upcoast side of the channel and ebb flow was
confined to the downcoast side of the entrance
channel.

Tide plus waves from upcoast——Plan 2. Comments for this

plan are similar to those for Plan 1l upcoast waves, ex-
cept that currents along the upcoast side of the ocean-
ward section of the welr jetty were slightly increased.

Tide plus waves from downcoast--Plan 2. Same as for

Plan 1 except that the upcoast movement of the longshore
current began very close to the weir jetty.

Tide plus waves from upcoast--Plan 3.

(1) This plan showed the best ebb and flood flow surface
current patterns in the entrance channel, being
the least affected by waves and showing a lesser
tendency for flow into the deposition basin. Tests
with waves also corrected the minor deficiency seen
in tide tests without waves in which there was ebb
flow over the weir.

(2) There was less wave protection in the basin due to
the greater exposure to waves because of the 30-deg

weir angle.
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Tide plus waves from downcoast--Plan 3. The longshore
current moved upcoast from near the weir, although
velocities initially were very low near the weir.

Summary. Waves significantly affect flow patterns in
the vicinity of the weir jetty. Longshore currents gen-
erated by upcoast waves are split between flowing over
the weir and flowing oceanward along the upcoast jetty.
At lower falling tide stages, the entire current may be
directed oceanward along the jetty. In the region of the
jetty entrance, ebb and flood currents are shifted by the
effect of the waves, For upcoast waves, ebb flows are
confined to the upcoast side of the channel and flood
flows to the downcoast side of the channel. The more
acute the angle of the weir with the shore, the greater
the exposure of the deposition basin to waves. Thus

the ranking of plans from less to greater upcoast wave
exposure would be: Plans 1, 2, and 3. However, a
qualitative evaluation of the amount of wave activity in
the deposition basin by downcoast waves would reverse,
i.e., Plans 3, 2, 1, since Plans 1l and 2 let greater
downcoast wave energy through the entrance channel to
the deposition basin., The Plan 3 deposition basin

is in the diffraction zone of the waves entering between
the jetties. Flow patterns over the basin also were
significantly affected by waves,

Dye streak velocity measurements

114,

115.
following:

Results from the dye streak velocity measurements indicated:

e

These measurements supported observations from the
surface current photographs that as the tide elevation
falls and the breaker zone moves seaward, there is
increased current flow along the upcoast face of the
jetty and weir., Plan 3 had higher, more concentrated
currents in this region along the outer portion of the
jetty due to its geometry.

As the weir angle was reduced from 90 deg, there was an
increase in seaward-flowing velocities at the oceanside
base of the weir section.

Beach Response Tests

Results from the beach response tests indicated the

_?_,_.

Not all sediment entering the vicinity of a weir jetty
system from upcoast moved over the weir into the
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deposition basin or was stored in a fillet upcoast of
the weir. Some sediment moved offshore due to two
mechanisms. First, longshore currents for the larger
wave conditions were deflected offshore along the ocean
side of the jetty, moving sediments with them. Second,
reflected waves from the upcoast jetty interacted with
incident waves forming a short-crested wave field upcoast
of the weir jetty., The interaction of this wave field
and the shoreline created circulation cells with rip
currents which carried sediment offshore just upcoast of
the weir section.

b, The fillet storage with upcoast waves for the various
weir angles was ranked as follows, from greatest to
least: 90, 60, 45, and 30 deg. Since shapes of fil-
lets were similar, if the reduction of area for smaller
angles due to slicing out more of the storage area is
neglected, the 45-deg weir would have the minimum surface
area due to focusing of reflected waves on it for the
given model wave condition.

c. The amount of sediment moving offshore was dependent on
weir angle, with the 90-deg weir (Plan 1) having the
least offshore movement followed by the 60-deg weir
(Plan 2), 45-deg weir (Plan 3C), and the 30-deg weir
(Plan 3).

d. Considering the basic weir jetty orientations, the per-
centage of fillet removal by the downcoast wave, de~
sirable for backpassing, was greatest for Plans 2 and 3,
with 100 percent removal; and Plan 1, with 52 percent
removal.

e, Testing of Plan 3 with a tide showed little difference
from the usual no-tide tests with a 5-ft, 10-sec wave,

f. The location of a groin upcoast of Plan 3 did not

"~ deter sediment movement to the weir once a fillet was
created upcoast of the groin. These configurations
(Plans 3A and 3B) then permitted easier natural back-
passing outside the shadow of the jetties.

g. A groin downcoast of the weir section (Plan 3D) aided in
reducing the amount of sediment bypassing the weir and
moving to the jetty tips, but 1t did not totally stop
that movement,

Application to Weir Jetty Design

116, 1In concept, the most desirable weir jetty system would in-

volve the following functions:
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a., The weir would be so located and designed that flow over
the weir would occur predominantly on the flood tide so
that sediment is carried into the deposition basin.

o

Ebb flow would be predominantly between the jetties and
not over the weir for two primary reasons., First, strong
ebb flow toward and over the welr might train the naviga-
tion channel toward the weir and thus through the deposi~
tion basin. Second, if there is net flood flow over the
weir, there will be net ebb flow in the navigation chan~-
nel, aiding in flushing out sediments which might enter
between the jetties,

c. The weir would be elevated and positioned in such a man~-
ner that only the net longshore drift would be captured.

d. The jetty system would be so aligned to encourage the
transport of most of the sediment deposited in the fillet
up beach during longshore transport reversals.

117. A discussion of the application of results of this report to
weir jetty design must be considered in view of the limitations of this
testing program, including simplified bathymetry and channel orientation,
limited wave conditions, and limited tidal conditions. Prototype situa-
tions have complex bathymetries, variable shoreline orientation, a vari-
ety of bay channel(s) configurations, and possible large variations in
wave conditions. This discussion will hopefully supplement information
provided by Weggel (1981) and other jetty design guidance.

118. Important parameters which need to be defined as well as
possible include gross and net longshore sediment transport rates and
variations within the yearly cycle, this of course coupled with wave
climatology; the local bathymetry and historical records of its varia-
tion; tide range; the type of inlet as defined by its tidal response,
which can be determined by evaluation of its Keulegan K wvalue.

119. Two series of recommendations will be presented. The first
will deal with hydraulics, the second with sediment movement.

Hydraulic considerations

120. Flow over the weir and weir elevation., It is recommended

that ebb flow over the weir be minimized by examination of the tidal-
level, ebb-velocity relation at the inlet entrance, This can be done
based on an evaluation of the Keulegan K (Keulegan 1967) and use of

Figure 5. As was noted in the testing, high Keulegan K wvalue inlets
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have higher ebb flows so the elevation of a weir for this type of inlet
should be kept at midtide. For low Keulegan X 1inlets the weir could
be lower if other factors would permit this; factors such as a low wave
energy environment, desire to capture all sediment in basin, and
minimized velocities carrying sediment seaward along jetty. On the
other hand, low K dinlets can have the weir higher than midtide if
required due to strong wave conditions and the desire to have more pro-
tection in the basin since maximum flood flows occur at higher water
levels than at the midtide level.

121. Weir location. With respect to tidal currents within the

jetty system, the farther the weir is from the navigation channel, the
less likely it is to capture channel ebb currents that are directed
seaward. This can depend on the location of the predominant ebb chan-
nels and their orientation., Care must be taken in evaluation of ebb

flow direction because once the jetty system is constructed, adjustments
of channel orientation may take place due to removal of some wave effects
and thus sediment movement which, for example, may have deflected the

ebb channel downcoast,

122, Jetty alignment. Parallel oceanward jetty segments provided

the best current patterns on both ebb and flood flows, with and without
wave action; there was less tendency for tidal flows to meander toward
the basin region. With respect to wave action from the downcoast direc-
tion, qualitative observations from this study indicate less wave activ-
ity in the basin region for the jetty systems with parallel outer jetties
(Plan 3 in this study) than those with flared outer jetty sections

(Plan 1 or 2 in this study). The flared outer sections act as wave
guides in bringing downcoast waves through the main entrance channel
toward the deposition basin.

123, Weir length. Primary transport over the weir exists at its

intersection with the shoreline. If wave climate is mild, the weir
length should only be as long as necessary to prevent a chance of

closure, something which has not yet been noted to occur in existing
weir jetty systems. The length to prevent closure would need to be

evaluated based on wave conditions, beach slope, orientation of the
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structure, etc., If the wave climate is highly variable, the weir should
probably extend further oceanward so as to include a large percentage

of the breaker zone since it was noted that there was heavy transport
over the weir at the breaker location for larger wave conditions; other-
wise, the sediment will move offshore along the jetty. Another factor
influencing weir length will be the consideration of the amount of flow
which is desired in the system. If a design objective is to obtain high
ebb dominance of flow in the navigation channel, then the weir should be
longer, if this would not interfere with other constraints, such as
placement of a portion of the weir too close to the channel. The com-
plete hydraulic flow situation must be considered to determine whether
the additional flow provided by a wider weir will substantially augment
ebb flow predominance and provide additional scouring ability in the
entrance channel.

124, Jetty and weir orientation. A weir which is perpendicular

to shore will normally have an outer section flared channelward (Plan 1
system) to provide a niche for the deposition basin away from the chan-
nel. This combination is probably the least likely system to permit
sediment movement along the upcoast side of the jetty system toward the
jetty tip and thus the navigation channel. This assumes that depths are
fairly deep at the jetty tip; otherwise, if depths are shallow and the
breaker zone is close to the jetty tip, then sediment may move along
the breaker line to the jetty tip. Jetties with angled weir sections
and parallel outer trunks tend to concentrate the longshore currents
along the structure and might have more sediment transport along the
upcoast face of the structure toward the entrance channel.

Sediment movement considerations

125. Location of shoreward end of weir., The shifting of the start

point of the weir seaward from the initial shoreline permits greater fil-
let development (and thus storage for sediment in a reversing longshore

drift environment) and may aid in placement of the deposition basin in a
more recessed location, which otherwise might not be possible due to land
acquisition constraints. The location of the basin somewhat recessed is

appropriate due to the tendency for the sediment moving over the welr
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for moderate wave conditions to follow the shoreline. If the weir is
initiated at the original shoreline, sediment will tend to move around
the existing inlet shoulder toward the navigation channel. With a por-
tion of the deposition basin recessed shoreward of the weir, the
sediment tends to wrap around the section of jetty landward of the weir
by waves refracting over the accreted sediment. If transport is pre-~
dominantly unidirectional, the location of the shoreward end of the weir
could probably be maintained at the existing shoreline since all material
will eventually move onto the basin, but the deposition basin should
still be recessed landward of the weir section to prevent movement of
sediment around the inlet shoulder. If the starting point of the weir
section is to be located near the existing shoreline for reasons such

as to move it away from the navigation channel, the use of a groin up~-
coast of the weir section (such as Plan 3B) may be desired to provide
sediment storage for a reversing littoral climate, but if the wave
climate is severe, the groin might aid in jetting some sediment offshore.

126, Reflected wave effects, The previously discussed model study

noted effects on sediment transport along the beachline upcoast of the
jetty system due to the interaction of waves reflected off the jetty
structure and the incident waves, The orientation of the jetty structure
and weilr section caused varying effects., It is difficult to evaluate
these effects on jetty design due to the qualitative nature of these
tests in the model and the lack of knowledge as to how often conditions
would be conducive to creating the phenomenon and how strong these ef-
fects might be in prototype situations. Refraction-reflection patterns
(see Plates 102 to 105) could be developed for a given site condition to
aid in evaluating these effects. The closer spacing of circulation cells
for the 30-deg and 45-deg angled weirs created slightly more offshore
sediment movement than that of the 60-deg and 90-deg weirs, even though
velocities in the short-crested wave field were greater in the latter
pair than in the former pair. The pulling of sediment offshore in this
region may not necessarily be detrimental if littoral reversal occurs
often enough, so that there is useful storage offshore and upcoast of

the weir section, and assuming the sediment can move back onshore and
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upcoast. If the longshore transport is predominantly unidirectional,
storing sediment in this region may not be desirable as it may tend to
move further offshore along the jetty and move toward and into the
navigation channel at the jetty tip. Therefore, a larger angled weir

might be desirable at a unidirectional longshore transport site.
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Table 3 (Concluded)

Surface Area of Fillet After Total Amount Percent of Total Amount Total
Upcoast Percent of Downcoast Lost from Original Deposited Amount Fed
Test Tracer Wave Test 10 Wave Fillet Fillet in Basin to Beach
No. Plan Material ft2 (M) Fillet Area ft2 (M) ft2 (M) Lost ft3 (M) f£3 M)
1 1 Coal 1.70 14 0.55 1.20 71 — 7.711
2 1 Coal 8.44 70 -0.41 8.85 105 - 4,244
3 1 Plastic 33.40 278 3.35 30.05 90 — 5.642
4 1 Glass Beads 4.78 40 2.28 2.53 53 0.118 2,051
5 1 Glass Beads 4.90 41 4,39 0.51 10 0.095 1.058
6 1 Glass Beads 3.77 31 —_— - - 0.107 1,121
7 1 Glass Beads 2.60 22 —_ - - 0.210 0.332
8 1 Glass Beads 0.80 6 - - - 0.918 3.364
9 1 Glass Beads 1.65 14 - -_ - 0.354 1.425
10 1 Coal 12,00 100 5.77 6.18 52 2.907 8.719
11 2 Coal 9.61 80 0.00 9.61 100 2,283 3.590
12 3 Coal 6.25 52 0.00 6.25 100 2,520 3.590
13 3 Coal 15.35 128 7.20 8.15 53 2,051 3.590
14 3 Coal 1.15 10 -0.35 1.50 130 7.736 12.822
15 3 Coal 2.08 17 -0.10 2.18 105 3.707 12.309
16 3A Coal 18.25 152 3.80 14.45 79 1.139 4,103
17 3B Coal 28.20 235 2.70 25.50 90 2.264 3.077
18 3C Coal 7.60 63 0.65 6.95 91 2,523 3.590
19 3D Coal 2.50 21 - - - —_ —
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_a—SHOREWARD LIMIT OF MOLDED AREA

_//
By g —— T T s e e PN e e ]
S e o —— T BEACH
DEPOSITION ~—— \ / NOUSZEIEN,
A A—-
BASIN —OUTER LIMIT OF MOLDED AREA \\/
—|-10
.
'S
)
@
20 *COAL 8
SPECIFIC GRAVITY=1.386 =
o SIZE, DIAM=0.5 MM P4
——~ HIGH WATER LINE AT ONSET OF TEST (NO TIDE) 89 . S
“g
—= ——HIGH WATER LINE AFTER 6 HOURS OF 5-FT, 10-SEC WAVES 25 —-20
FROM 30 DEG UPCOAST ) HIGH WATER
HIGH WATER LINE AFTER UPCOAST WAVES PLUS 3 HOURS OF z> o
5-FT, 10-SEC WAVES FROM 30 DEG DOWNCOAST g
=10
—
L 1 Hl ! | J
o) 200 400 600 800 1000
DISTANCE, FT {PROTOTYPE)
PROFILE AT ONSET OF TEST
—-25
SCALES IN FEET
MODEL 2 0 2 4 G 8 10
PROTOTYPE 200 [9) 200 400 600 800 1000
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_a—SHOREWARD LIMIT OF MOLDED AREA

b BEACH
DEPOSITION / NOU/?/‘E/‘(MENT
BASIN < AREA
—OQUTER LiMIT OF MOLDED AREA
-—-10
~—weir
-
.
g
20— * COAL >
i SPECIFIC GRAVITY= 1,36 ©
B SIZE, DIAM= 0.5 MM c
== — HIGH WATER LINE AT ONSET OF TEST (NO TIDE) E) 3
s
—— ——HIGH WATER LINE AFTER 5 HOURS OF 5-FT, 10-SEC WAVES :’5 —-20
FROM 30 DEG UPCOAST . g CH WATER
HIGH WATER LINE AFTER UPCOAST WAVES PLUS 2%, HOURS OF 2 o
5-FT, 10-SEC WAVES FROM 30 DEG DOWNCOAST “5"*
oy
bl
o 200 400 600 800 1000
DISTANCE, FT (PROTOTYPE)
PROFILE AT ONSET OF TEST
—=25
PLAN i
SCALES IN FEET
MODEL 2 0 2 4 5 3 10

PROTOTYPE 200 o 200 400 600 800 1000
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—SHOREWARD LIMIT OF MOLDED AREA

T BEACH
NOURISHMENT
e T T T T T A 7T I R T FFIF T — e — T AREA——
DEPOSITION
BASIN MODEL EFFECT
(SEE PARAGRAPH 65) ~4-10
[~—weir
-
L
¢
20 *PLASTIC >
SPECIFIC GRAVITY = {48 o]
SIZE, DiAM- 3.0 MM |t
) 4 4
% o 3
St
w0
= —=20
£g
z&
S
10
L 1 1 | 1 |
o] 200 400 600 80C 1000
25TANCE, F T {PROTOTYPE)
LEGEND PROFILE AT ONSET OF TEST
— —— — HIGH WATER LINE AT ONSET OF TEST (NO TiDE)
—— —— HIGH WATER LINE AFTER 11 HOURS OF 5-FT, 10-SEC WAVES —-25

FROM 30 DEG UPCOAST
——————— HIGH WATER LINE AFTER UPCOAST WAVES PLUS 5 HOURS OF BEACH RESPONSE TEST 3

- - T
5-FT, 10-SEC WAVES FROM 30 DEG DOWNCOAS PLAN 1

SCALES IN FEET
MODEL 2_ © 2 4

SROTOTYPE 200 e 200 400 600 B 1000
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PLAN 1
HOUR 5
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BEACH RESPONSE TEST 4

PLAN 1
HOUR 50
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BEACH RESPONSE TEST 5

PLAN 1
HOUR 60
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HOUR 60
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PLAN 1
HOUR 16
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BEACH RESPONSE TEST 7

PLAN 1, LOOKING UPCOAST
HOUR 16
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PLAN 1
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BEACH RESPONSE TEST 8
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HOUR 60
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_—SHOREWARD L IMIT OF MOLDED AREA

DEPOSITION
BASIN
-10
\\b——&uw
/ NOURISHMENT
ARE A —~wr
N OUTER LIMIT OF MOLDED ARE A
[~~—wer
-
'S
g
20— *COAL >
SPECIFIC GRAVITY=1.36 [e]
. SIZE, DIAM=0,5 MM l’z‘
— — —— HIGH WATER LINE AT ONSET OF TEST (NO TIDE) 5% ol S
ug
———— HIGH WATER LINE AFTER 7 HOURS OF 5-FT, 10-SEC WAVES ub —-20
FROM 40 DEG UPCOAST 22 HIGH WATER
HIGH WATER LINE AFTER UPCOAST WAVES PLUS | HOUR OF 2% o
5-FT, 10-SEC WAVES FROM 30 DEG DOWNCOAST gu
-10
I S S SR I
0 200 400 600 80C +000
DISTANCE, FT (PROTOTYPE)
PROFILE AT ONSET OF TEST
—-25
SCALES IN FEET
MODEL 2 0o 2 4 ] 8 10
PROTOTYPE 200 [ 200 400 600 800 1000




BEACH RESPONSE TEST 10

PLAN 1

HOUR 7
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BEACH RESPONSE TEST

PLAN 1
HOUR 8
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29 d1vid

a— SHOREWARD L/MIT OF MOLDED AREA

{
F ey
DEPOSITION / /MW\"
BASIN [
; —-10
\7—5&1&/
/ NOURISHMENT
AREA —
S OUTER LIM/T OF MOLDED AREA
=
U
7
20 S
o
* COAL =
P SPECIFIC GRAYITY=1.36 z
————HIGH WATER LINE AT ONSET OF TEST (NO TIDE) 5T SIZE, DIAM=0.5 MM S
Gg
—— ——HIGH WATER LINE AFTER 7 HOURS OF 5-FT, 10-SEC WAVES wb ~—20
FROM 40 DEG UPCOAST 32 HIGH BATER
g
HIGH WATER LINE AFTER UPCOAST WAVES PLUS t HOUR OF iz o
5-FT, 10-SEC WAVES FROM 30 DEG DOWNCOAST g
-10
L. | i i H J
0 200 400 600 800 1000
DISTANCE, FT (PROTOTY o[}
PROFILE AT ONSET OF TEST
—l-zs
BEACH RESPONSE TEST {1
PLAN 2
SCALES IN FEET
MODEL 2 o 2z 4 5] 8 10

PROTOTYPE 200 ] 200 400 800 800 1000




BEACH RESPONSE TEST 11

PLAN 2
HOUR 7
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HIGH WATER LEVEL 125

____________________ MEAN TIDELEVEL . — R
pEPOSITION /T T N b ]
BASIN /
—~10
1 srack
,/ NOURISHMENT
AREA—»—
N OUTER LIMIT OF MOLDED AREA —
I' 9
o
@
8
20 #COAL 5
SPECIFIC GRAVITY=1.36 o
g SiZE, DIAM=0.5 MM O
———— HIGH WATER LINE AT ONSET OF TEST (NO TIDE) L
ug
HIGH WATER LINE AFTER 7 HOURS OF 5FT, 10-SEC WAVES wb 20
FROM 40 DEG UPCOAST i 28 HIGH WATER
—— —— HIGH WATER LINE AFTER UPCOAST WAVES PLUS | HOUR OF ¥ o 27
5-FT, 10-SEC WAVES FROM 30 DEG DOWNCOAST gh !
-10
| ! | | | _J
[+] 200 400 600 800 1000
DISTANCE, FT (PROTOTYPE)
PROFILE AT ONSET OF TEST
—-2s
PL.AN 3
SCALES IN FEET
MODEL 2 3] 2 4 -] 8 10

PROTOTYPE 200 0 200 400 6§00 800 1000
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HIGH WATER LEVEL +2.5

MEAN TIDE LEVEL

_a——SHOREWARD LIMIT OF MOLDED AREA

- — =0

DEPOSITION

~10

— BEACH
NOURISHMENT
: AREA—w—

N_OUTER LIMIT OF MOLDED AREA

20

*COAL
SPECIFIC GRAVITY=1.36
SIZE, DIAM=0.5 MM

CONTOURS, FT

——-—— HiGH WATER LINE AT ONSET OF TEST WITH 5-FT TIDE

HIGH WATER LINE AFTER 7 HOURS OF 5-FT, 10-SEC WAVES
FROM 40 DEG UPCOAST

—————HIGH WATER LINE AFTER UPCOAST WAVES PLUS 1 TIDAL CYCLE OF
5-FT, 10-SEC WAVES FROM 30 DEG DOWNCOAST

HIGH WATER

MATERIAL*

MEAN TIDE LEVEL
FT (PROTOTYPE)

1 i

| 1 |
[ 200 400 500 800 1000
DISTANCE, FT (PROTOTYPE)

PROFILE AT ONSET OF TEST

BEACH RESPONSE TEST 13
PLAN 3

SCALES IN FEET
MODEL 2 o 2 4 [ 8 10

PRQTQTYPE 200 o 200 400 §00 800 1000




BEACH RESPONSE TEST 13

PLAN 3
HOUR 7
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HIGH WATER LEVEL 125

____________________ MEAN TIDELEVEL ___ _  _____ o
_—SHOREWARD LIMIT OF MOLDED AREA
DEPOSITION /g e ]
—t-10
\\
L gEACH
/ NOURISHMENT
AREA -
NTOUTER LIMIT OF MOLDED AREA -
[
u
[o4
3
a6 *COAL [
SPECIFIC GRAVITY=1.386 g
i SIZE, DIAM=0.5 MM Q
— ——— HIGH WATER LINE AT ONSET OF TEST (NO TIDE) 5% 10
ar
HIGH WATER LINE AFTER 7 HOURS OF S-FT, 10-5EC WAVES u:c:> —{-20
FROM 40 DEG UPCOAST [ HIGH WATER
— —— HIGH WATER LINE AFTER UPCOAST WAVES PLUS § HOUR OF 2% o GATERIALY
5-F T, 10-SEC WAVES FROM 30 DEG DOWNCOAST g
-10
L | I i | i
C 200 400 600 800 1000
DISTANCE, FT (PROTOTYPE)
PROFILE AT ONSET OF TEST
—-25
PLAN 3
: SCALES IN FEET
MODEL 2 o 2 4 B 8 10
PROTOT YPE 200 o 200 400 500 800 1000
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HIGH WATER LEVEL #25

____________________ MEAN TIDE LEVEL - S _ °
_——SHOREWARD LIMIT OF MOLDED AREA
DEPOSITION o
BASIN ——— T T T T T T e e e T e e T e T e e T T T T
~
—— — —-10
WEIR — N~
= BEACH
’/ NOURISHMENT
AREA—>—
\\OUTE/? LIMIT OF MOLDED AREA
-
L
o
o
>
20 % COAL o
SPECIFIC GRAVITY=1.36 z
. SIZE, DIAM=0.5 MM 5
— ——— HIGH WATER LINE AT ONSET OF TEST (NO TiDE) 58 0 ©
=
HIGH WATER LINE AFTER 6 CYCLES OF 5-FT, 10-SEC WAVES g:@ —4-20
FROM 40 DEG UPCOAST =] HIGH WATER
—— —— HIGH WATER LINE AFTER UPCOAST WAVES PLUS § CYCLE OF zS o
5-FT, 10-SEC WAVES FROM 30 DEG DOWNCOAST g
-10
| { L i { }
G 200 400 600 800 1000
DISTANCE, FT (PROTOTYPE)
PROFILE AT ONSET OF TEST
—=25
PLAN 3
SCALES IN FEET
MODEL 2 [¢} 2 4 [ 8 10
PROTOTYPE 200 o 200 400 500 800 1000
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PLAN 3
CYCLE 6
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BEACH RESPONSE TEST 15
PLAN 3
CYCLE 7
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HIGH WATER LEVEL +2.5

- A AN TIE VL o
_——SHOREWARD LIMIT OF MOLDED AREA
DEPOSITION ===
BASIN
=10
\”\«»—f&mw
/ NOURISHMENT
AREA
-
Lo
&
a
)
3
¥ COAL =
SPECIFIC GRAVITY=1.36 g
. SIZE, DIAM=0.5 MM 3
————HIGH WATER LINE AT ONSET OF TEST (NO TIDE) 58
o
HIGH WATER LINE AFTER 8 HOURS OF 5-FT, 10-SEC WAVES 25 —20
FROM 40 DEG UPCOAST 2o HIGH WATER
————HIGH WATER LINE AFTER UPCOAST WAVES PLUS | HOUR OF ze
5-FT, 10-SEC WAVES FROM 30 DEG DOWNCOAST gu
S [ o ]
o] 200 400 500 800 1000
O!STANCE) FT (PF?OTOTYF'E)
PROFILE AT ONSET OF TEST
—i-25
BEACH RESPONSE TEST 17
PLAN 3B
SCALES IN FEET
MODEL 2 0 2 4 [ 8 10

PROTOTYPE 200 o 200 400 6500 800 1000
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BEACH RESPONSE TEST 17

PLAN 3B, DEPOSITION BASIN
HOUR 20
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PLAN 3B, DRY BED
HOUR 20
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APPENDIX A: TWO-DIMENSIONAL WAVE FLUME TESTS

1. The subject tests were conducted to aid in the selection of a
sediment tracer for the three-dimensional weir jetty beach response
testing. The sediment to be selected would be used as an overlay on the
existing concrete model bed. As mentioned in the main text, the model
was originally designed for hydraulic fixed-bed tests and during the
testing program it was decided to examine beach response upcoast of the
weir jetty. Because of time and cost limitations 1t was not desirable
to construct a fully movable~bed model.

2, It was felt that the main criterion, in light of the con-
straints discussed above, would be to choose a sediment with a natural
profile close to that of the molded beach profile for wave conditions
that would be applied in the model. The beach slope molded in the model
was a relatively flat slope (1:60) and thus representative of small
particle size beaches (less than 0.3 mm) with high wave exposure (U. S.
Army Coastal Engineering Research Center 1977%), This same slope was
reproduced in the flume tests for the various sediments (the initial
slope at the beginning of a test). Sediments chosen from those on hand
= 0.25 mm, specific gravity (S.G.) = 2.65; glass
D50 = 0,08 mm, S.C. =
= 0,5 mm, S.G. = 1.36;

at WES were: sand, D50<

= 0.13 mm, S.G. = 2.42; glass beads,
= 1,0 mm, S.G. = 1.36; coal, D

beads, D50
2.42; coal, D50 50
plastic (Tenite butyrate), D50 = 3,0 mm, S.G. = 1.18, The gradation
curves are shown (except for plastic, which is of a uniform size) in
Plates Al-A5., Plate A6 shows the angle of repose of the sediments, both
wet and dry, as measured in a clear plastic box. Plate A7 shows fall
velocities at standard conditions for the sediments as measured in a
4~in.~diam glass cylinder (except for the sand curve, taken from Rouse
(1937)).

3. The facility used was a 2-ft-wide wave flume, 166.5 ft long,

and 7,0 ft deep with details shown in Plate A8. The beach profile was

* References cited in this Appendix may be found in the References
section at the end of the main text.
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molded in the area of the flume where the observation windows are seen
in Plate A8, The beach slope was molded from a line drawn on the side
of the flume window and measurements of the profile were made from this
reference line. Wave filters were installed to absorb waves reflected
from the model beach to minimize interference of rereflected waves with
the equilibrium profile. The test beach was molded from the -29 ft
contour (from l:100-scale three~dimensional model) to +10.0 msl, a
horizontal length of approximately 50 ft. Wave conditions used were
based on values considered reasounable for a 1:100 scale undistorted
model, Periods used were 0.7 sec (7 sec prototype), l.l sec (11 sec)
and 1.5 sec (15 sec). Wave heights used were 0.039 ft (3.9 ft proto-
type), 0.072 ft (7.2 ft), and 0.146 £t (l4.6 ft). The tests were run
until it appeared the profile was stabilized. It was fairly easy to
determine this for the lighter weight materials, but normally there was
still some minor movement continuing for glass beads and sand, due to
the relatively small waves used in the study.

4. The beach profiles are presented in Plates A9-Al5., In many
cases a beach slope was created offshore of the original waterline. The
l-mm coal (tests 1-8) showed material transport shoreward where a new
beach was built seaward of the original one. Tests 9-11 with 0.08-mm
glass beads did not respond as the coal did, but maintained the original
beach slope and showed offshore movement, creating bars. The mechanism
for this was a uniformly rippled bottom (~1 in. in length) with eddies
that suspended the beads high enough to be carried offshore by a net
offshore current just above the bottom., This net movement was due to
the cnoidal shape of the waveform producing higher, short duration
velocities under the wave crest and longer term, slower velocities under
the wave trough. Tests 12-18 with the 0,5~-mm coal were somewhat similar
to the larger coal except there was some offshore movement for the
larger, longer period waves (tests 16-~18)., The plastic (tests 19-26)
did not respond to the shorter period, small waves (tests 22 and 25).
Otherwise, beaches were built seaward of the original waterline and then
movement was onshore. The sand did not respond to the short period

waves (tests 27-28) and built beaches for the larger waves (tests 29-32),
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The 0.13-mm glass beads (tests 33-40) showed movement similar to that of
the smaller glass beads as discussed previously,

5. In analyzing the 40 flume tests, two criteria were used to
evaluate the possible model materials, First, it would be desirable to
have a material which moved onshore and offshore as sand would for given
prototype conditions that would be scaled in the model. Second, a
material with a fairly flat slope would be desirable in order to blend
in with the concrete model slope of 1:60 (which was designed and con-
structed before the decision was made tco study beach planforms upcoast
of the weir jetty).

6. Onshore~offshore movement of the beach profile has been associ-
ated with the magnitude of wave steepness (Johnson 1949), with wave
steepness and fall velocity of the sediment particle (Dean 1973), with
wave steepness and sediment diameter (Iwagaki and Noda 1962), and with
wave steepness, sediment diameter, and specific gravity of the sediment
(Nayak 1970). For each of the above-mentioned offshore~onshore movement
models, a critical wave steepness can be determined, for which, if the
wave steepness (height/length, HO/LO) is greater than that value, the
movement will be offshore and if less, the movement will be onshore,

7. The model test conditions were converted to prototype values
by the scaling ratios of 1:10 for period and 1:100 for wave height, and
the movement predicted by the various models was determined. 1In the
cases of the models by Dean, Iwagaki and Noda, and Nayak, two sediment
sizes were assumed in order to cover a range of values. The prototype
sediment sizes selected were 0.25 mm and 0.8 mm. In the application to
the model of Dean, the fall velocities were determined by the curve of
Rouse (1973) shown in Plate A7. The resultant movement is tabulated for
each test and each model in Table Al and compared with the observed
movement in the two-dimensional flume tests. In the column of observed
movement in the model there is an additional term used to describe
sediment movement, other than onshore or offshore. The term '"mixed" is
included to represent those profiles that had some accumulation shore~-
ward of the breaker and at the breaker line. This correspounds to the

"Type II" beach of Sunamura and Horikawa (1974) and which has been
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observed in previous model studies of beach profiles. Scanning Table Al
for each sediment group, it is seen that the 0,13-mm glass bead shows
the greatest frequency of agreement with the prototype models, followed
by the 0.08-mm glass bead, the 0.5-mm coal, the 0,25~mm sand and 1.0-mm
coal and the 3.0-mm plastic, It should be noted that most of the pro~
totype models call for offshore movement for the conditions specified
and thus the materials that model offshore movement will do better in
this comparison. The reason for mos% conditions predicting offshore
movement was the desire to maintain fairly large waves at the

1:100 scale. The plastic and sand each had two tests where the material
did not respond at all to the test conditions for small short-period
waves,

8. Based on a slope criterion, the glass beads maintained the-
flattest slope, very close to that of the model bed., This was most
likely due to their low angle of repose, resulting from their spherical
shape. Sand was excluded from further consideration due to its lack of
response to smaller waves (it was not desired to distort wave height in
the three-dimensional model) and its steep beach slope for large waves.
Plastic and coal were also undesirable due to their steep beach slopes
(relative to the model bed). Therefore the bead was chosen as the
modeling sediment based on slope criterion and the onshore-~offshore
movement criterion, The larger glass bead was chosen over the smaller
glass bead in order to maintain a critical H/L ratio similar to pro=-

totype conditions. Based on Dean (1973):

i _ LeImw
Lcritical e
where
H = wave height
L = wave length
w = fall velocity
T = wave period

The larger bead size had the greater fall velocity, thus the greater

critical H/L ratio. TFigure Al shows that in order to maintain the
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same critical H/L ratio in model and prototype for the 1l:10-period
scale of a 1:100 model, the 0.13-mm glass bead is closer than the 0.08-mm
glass bead. Also note that the 0.5-mm coal is a close second choice in
this respect.

9. The reason for the better response of the beads to the small
waves than that of sand was due to the low angle of repose. The expres-
sion for longshore transport, I, , by Inman and Bagnold (1963) shows

1
that

1
Il tan ¢f

where ¢f is the intergranular friction coefficient which is usually
assumed equivalent to the angle of repose of the sediment. Therefore
the smaller the ¢ value the greater the likelihood for transport,
although for the 2D flume tests this must be thought of in terms of
onshore~offshore transport rather than longshore transport.

10. After initial three~dimensional testing with glass beads, it

was found necessary to use coal as discussed in paragraphs 71-73 of the

main text.
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Table Al

Comparison of Onshore-Offshore Sediment Movement of Flume Tests with Various Prototype Criteria

Prototype Sediment Movement Predicted by

Wave Wave Wave gzz:;ZES ; Dean Criterion Noda Criterion
He;{ght Period Stﬁel/’gess Movement Johnson Criterion Dgy = 0.25 mm D5y = 0.8 mm Dgy = 0.25 mm D5p = 0-8mm
Sediment 0 T o' o in Model Direction  Agreement Direction  Agreement Direction  Agreement Direction Agreement Direction  Agreement |
Test (S.G., diam) ft sec ft Flume® of Movement with Model of Movement with Model of Movement with Model of Movement with Model of Movement with Model o
1 Coal 0.036 0.7 0.016 On On Yes Off No Off No Off No Off No
2 (1.37, 1.0 mm) 0.072 0.7 0.029 On Off No Off No Off No Off No Off No
3 0.146 1.1 0.023 On On Yes Off No Off No off No Off No
4 0.080 1.1 0.013 On On Yes Off No Off No Ooff No Off No
5 0.039 1.1 0.006 On On Yes Off No On Yes Off No On Yes
6 0.153 1.5 0.013 On On Yes Off No Off No Off No Off No
7 0.085 1.5 0.007 On On Yes Off No Off No Off No Off No
8 0.041 1.5 0.004 On On Yes Off No On Yes off No On Yes
9 Glass beads 0.153 1.5 0.013 Off On No Off Yes Off Yes Off Yes off Yes
10 (2.42, 0.08 mm) 0.041 1.5 0.004 Off On No Off Yes On No Off Yes On No
11 0.072 0.7 0.029 Off off Yes off Yes Off Yes Off Yes Off Yes
12 Coal 0.080 1.1 0.013 Mixed On Yes Off Yes Off Yes Off Yes Off Yes
13 (1.36, 0.5 mm) 0.039 1.1 0.006 On On Yes off No On Yes Off No On Yes
14 0.039 0.7 0.016 On On Yes Off No Off No Off No Off No
15 0.072 0.7 0.029 On Off No Off No Off No off No Off No
16 0.153 1.5 0.013 Mixed On Yes Off Yes Off Yes Off Yes Off Yes
17 0.085 1.5 0.007 Mixed On Yes Off Yes Off Yes Off Yes off Yes
18 0.041 1.5 0.004 Mixed On Yes Off Yes On Yes Off Yes On Yes
19 Plastic 0.041 1.5 0.004 On On Yes Off No On Yes Off No On Yes
20 (1.18, 3.0 mm) 0.085 1.5 0.007 On On ‘ Yes Off No Off No Off No Off No
21 0.153 1.5 0.013 On On : Yes Off No Off No Off No Off No
22 0.039 1.1 0.016 No On -- Off - On - Off -- On -
23 0.080 1.1 0.013 On On Yes Off No Off No Off No Off No
24 0.146 1.1 0.023 On On Yes Off No Off No Off No Off No
25 0.039 0.7 0.016 No On -- Off -- Off - Off -- off --
26 0.072 0.7 0.029 On off No Off No Off No Off No Off No
27 Sand 0.039 0.7 0.016 No On -- Off -- Off -- Off -- Off -
28 (2.65, 0.25 mm) 0.072 0.7 0.029 No Off - Off -- Off -- off - Off -
29 0.146 1.1 0.023 off On No Off Yes Off Yes off Yes Off Yes
30 0.080 1.1 0.013 On On Yes Oofft No Off No Off No Off No
31 0.153 1.5 0.013 Mixed On Yes Off Yes Off Yes Off Yes Off Yes
32 0.085 1.5 0.007 On On Yes Off No Off No Off No off No
33 Glass beads 0.153 1.5 0.013 Off On No Off Yes Off Yes Off Yes Off Yes
34 (2.42, 0.13 mm) 0.085 1.5 0.007 Mixed On Yes Off Yes Off Yes Off Yes Off Yes
35 0.041 1.5 0.004 On On Yes Off No On Yes Off No On Yes
36 0.146 1.1 0.023 Off On No Off Yes Off Yes Off Yes Off Yes
37 0.080 1.1 0.013 off On No Off Yes Off Yes Off Yes Off Yes
38 0.039 1.1 0.006 On On Yes - Off No On Yes Off No On Yes
39 0.072 0.7 0.029 Off Off Yes - Off Yes Off Yes Off Yes Off Yes
40 0.039 0.7 0.016 Mixed On Yes Off Yes Off Yes Off Yes Off Yes

* On = onshore movement; Off = offshore movement; Mixed = some offshore, some onshore.



Table Al

Comparison of Onshore-Offshore Sediment Movement of Flume Tests with Various Prototype Criteria

Prototype Sediment Movement Predicted by

Observed

Wave Sediment Dean Criterion . Noda Criterion Nayak Criterion
Lﬁeggess Movement Johnson Criterion D50 = 0.25 mm D50 = 0.8 mm D50 = 0.25 mm D50 = 0.8 mm D50 = 0.25 mm D50 = 0.8 mm
o' 7o in Model Direction  Agreement Direction  Agreement Direction Agreement Direction Agreement Direction  Agreement Direction  Agreement Direction Agreement
ft Flume® of Movement with Model of Movement with Model of Movement with Model of Movement with Model of Movement with Model of Movement with Model of Movement with Model

.016 On On Yes Off No Off No Off No Off No Off No Off No
.029 On Off No Off No Off No Off No Off No Off No Off No
.023 On On Yes Off No Off No Off No Off No Off No Off No
.013 On On Yes Off No Off No off No Off No Off No off No
.006 On On Yes Off No On Yes Off No On Yes Off No off No
.013 On On Yes Off No Off No Off No Off No Off No off No
.007 On On Yes Off No Off No Off No Off No Off No Off No
.004 On On Yes Oft No On Yes Off No On Yes Offt No Off No

.013 Off On No Off Yes Off Yes Off Yes Off Yes off Yes Off Yes
.004 Off On No Off Yes On No Off Yes On No Off Yes Off Yes
.029 off Off Yes Ooff Yes Off Yes Off Yes Off Yes Off Yes Off Yes

.013 Mixed On Yes Off Yes off Yes Off Yes Off Yes Off Yes Off Yes
.006 On On Yes Off No On Yes Off No On Yes Off No Off No
.016 On On Yes Off No Off No Off No Off No Off No Off No
.029 On Off No Off No Off No Off No Off No Off No Off No
.013 Mixed On Yes Off Yes Off Yes Off Yes Off Yes Off Yes off Yes
.007 Mixed On Yes Off Yes Off Yes Off Yes Off Yes Off Yes Off Yes
.004 Mixed On Yes Off Yes On Yes Off Yes On Yes Off Yes off Yes

.004 On On Yes Off No On Yes Off No On Yes Off No Off No
.007 On On Yes Off No Off No , Off No Off No Off No Off No
.013 On On Yes Off No Off No Off No Off No Off No off No
.016 No On - off -- On - Off - On - Off - Off -
.013 On On Yes Off No Off No Off No Off No Off No Off No
.023 On On Yes Off No Off No Off No Off No off No Off No
016 No On - Off -- Off — Off -- Off -- Off -- Off --
.029 On Off No Off No Off No Off No Off No Off No Off No

.016 No On -- Off - Off -- Off - Off -- Off -- off --
.029 No Off - Off - Off - Off -- Off -- Off -- Off -
.023 Off On No Off Yes Off Yes Off Yes Off Yes Off Yes Off Yes
.013 On On Yes Off No Off No Off No Off No Off No Off No
.013 Mixed On Yes Off Yes Off Yes Off Yes Off Yes Off Yes off Yes
.007 On On Yes Off No Off No Off No Ooff No off No Off No

.013 Off On No Off Yes off Yes Off Yes Off Yes Off Yes Off Yes
.007 Mixed On Yes Off Yes Off Yes off Yes off Yes off Yes off Yes
.004 On On Yes Off No On Yes Off No On Yes Off No Off No
.023 Off On No Off Yes Off Yes Off Yes off Yes Off Yes Off Yes
.013 Off On No off Yes Off Yes Off Yes Off Yes Off Yes Off Yes
.006 On On Yes off No On Yes Off No On Yes Off No Off No
.029 off Off Yes Off Yes Off Yes Off Yes Off Yes Off Yes Off Yes
.016 Mixed On Yes Off Yes Off Yes Off Yes Off Yes Off Yes Off Yes

QOO O OO0 QOO0 OO0 OO0 OO0 OCOOODOOOO

movement; Mixed = some offshore, some onshore.
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APPENDIX B: NOTATION

Corrvection factor for pore space

Bay tide amplitude, half range, ft
Ocean tidal amplitude, half range, ft
Surface area of bay, ft2

Cross—sectional flow area of inlet, ft
Equilibrium minimum cross-sectional flow area below mean sea
level, ft

Incident wave amplitude, ft

Short-crested wave amplitude, ft

Flow area between jetty tips at oceanward end of jetties, ft
Flow area at inlet gorge, equivalent to AC , £t

Dimensionless number, function of Keulegan K

Incident wave celerity, fps
Short~crested wave celerity, fps

Darcy-Weisbach friction coefficient

Inlet impedance = K, + K + fL /4R
i e c c

Acceleration due to gravity, ft/sec
Wave height, ft
Breaker height, ft

Deepwater wave height, ft
Immersed weight transport rate, lb/sec

Keulegan repletion coefficient
Dimensionless constant in sediment transport formula

Inlet exit loss coefficient
Inlet entrance loss coefficient

Reflection coefficient of structure

Bl



Wave length, ft
Crest length of short-crested wave, ft

Inlet channel length, ft

Horizontal length

Incident wave length, ft

Deepwater wave length, ft

Short-crested wave length, ft

Vertical length, ft

o . 2

Tidal prism, ft

Longshore energy flux factor, ft-lb/sec/linear ft of beach
. . . 2

Unit discharge over weir, ft' /sec

Longshore sediment transport rate, yd3/yr

Maximum discharge, ftg/sec

Hydraulic radius of inlet channel flow area, ft

Volume transport rate, ft3/sec

Tidal period, wave period, sec

Maximum bottom velocity at a given depth for incident wave,
fps

Maximum bottom velocity at a given depth for short-crested wave,
fps

Average velocity over weir, fps

Maximum average velocity, fps
Maximum average velocity over weir, fps

Fall velocity of sediment, cm/sec
Distance between maximum crestlines, ft
Acute angle between structure and shoreline

Breaker angle, deg

Head difference across weir section, ft

Acute angle between incident wave crest and structure, deg

B2



Angle between reflected wave crest and shoreline, deg
Width of circulation cell along shoreline, ft

Angle between incident wave crest and structure, deg
Intergranular friction coefficient

Water density, lb—-secz/ft4

Sediment density, 1b—-sec2/ft4
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